精英家教网 > 高中数学 > 题目详情

【题目】在长方体中,分别是的中点,,过三点的的平面截去长方体的一个角后.得到如图所示的几何体,且这个几何体的体积为

(1)求证:平面

(2)求的长;

(3)在线段上是否存在点,使直线垂直,如果存在,求线段的长,如果不存在,请说明理由.

【答案】(1)证明见解析;(2)(3).

【解析】试题分析:(1)证得是平行四边形,得出线线平行,利用线面平行的判定定理证明命题成立;(2)利用等体积转化,求出(3)在平面中作,,推出,证明,推出相似于,求得.

试题解析:解:(1)在长方体中,可知,由四边形是平行四边形,所以.因为分别是的中点,所以,则

,则平面............4

2

..................8

3)在平面中作,过于点,则.

因为平面平面,而

平面,

平面

,又

四边形为直角梯形,且高.......... 12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左、右焦点分别为为椭圆上一点(在轴上方),连结并延长交椭圆于另一点,设.

(1)若点的坐标为,且的周长为8,求椭圆的方程;

(2)若垂直于轴,且椭圆的离心率,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市户居民的月平均用电量(单位:度),以分组的频率分布直方图如图.

1)求直方图中的值;

2)求月平均用电量的众数和中位数;

3)在月平均用电量为的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆,直线,过右焦点的直线与椭圆交于两点,线段的垂直平分线分别交直线于点

1求弦长的最小值;

2在直线上任取一点,当的斜率时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, ,侧面为等边三角形, .

(Ⅰ)证明: 平面

(Ⅱ)求与平面所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,程序框图的输出结果为-18,那么判断框表示的“条件”应该是

A. B C D

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在扶贫活动中,为了尽快脱贫无债务致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费不计息.在甲提供的资料中:这种消费品的进价为每件14元;该店月销量Q百件与销售价格P的关系如图所示;每月需各种开支2 000元.

1当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

2企业乙只依靠该店,最早可望在几年后脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn},Sn为数列{an}的前n项和,向量=(1,bn), =(an-1,Sn), //

(1)若bn=2,求数列{an}通项公式;

(2)若 =0.

①证明:数列{an}为等差数列;

②设数列{cn}满足,问是否存在正整数lm(l<m,且l≠2,m≠2),使得成等比数列,若存在,求出l、m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一批产品需要原材料500吨,每吨原材料可创造利润12万元,该公司通过设备升级,生产这批产品所需原材料减少了吨,且每吨原材料创造的利润提高了;若将少用的吨原材料全部用于生产公司新开发的产品,每吨原材料创造的利润为万元,其中

(1)若设备升级后生产这批产品的利润不低于原来生产该批产品的利润,求的取值范围;

(2)若生产这批产品的利润始终不高于设备升级后生产这批产品的利润,求的最大值.

查看答案和解析>>

同步练习册答案