【题目】如图,四棱锥
中,
,侧面
为等边三角形,
,
.
![]()
(Ⅰ)证明:
平面
;
(Ⅱ)求
与平面
所成的角的大小.
【答案】(1)见解析(2)![]()
【解析】试题分析:(Ⅰ)由问题,可根据线面垂直判定定理的条件要求,从题目条件去寻相关的信息,先证线线垂直,即
,从而问题可得解;(Ⅱ)要求直线与平面所成角,一般步骤是先根据图形特点作出所求的线面角,接着将该所在三角形的其他要素(包括角、边或是三角形的形状等)算出来,再三角形的性质或是正弦定理、余弦定理来进行运算,从问题得于解决(类似问题也可以考虑采用坐标法来解决).
试题解析:(Ⅰ)取
的中点E,连接
,
则四边形
为矩形,
所以
,
所以
,
因为侧面
为等边三角形,
,
所以
,且
,
又因为
,
所以
,
所以
.
又
,
所以
平面
.
(Ⅱ)
![]()
过点
作
⊥
于点
,
因为
,
所以
平面
.
又
平面
,
由平面与平面垂直的性质,
知
平面
,
在
中,由
,
得
,
所以
.
过点
作
平面
于
,连接
,
则
即为
与平面
所成的角,
因为
平面
,
所以
平面
,
又
平面
,
所以
.
在
中,由
,
求得
.
在
中,
,
所以
,
由
,
得
,
即
,
解得
,
所以
,
故
与平面
所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】已知坐标平面上点
与两个定点
,
的距离之比等于
.
(1)求点
的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为
,过点
的直线
被
所截得的线段的长为
,求直线
的方程
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学利用国庆节进行社会实践,对
岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低硕族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 |
| 120 | 0.6 |
第二组 |
| 195 |
|
第三组 |
| 100 | 0.5 |
第四组 |
|
| 0.4 |
第五组 |
| 30 | 0.3 |
第六组 |
| 15 | 0.3 |
![]()
(1)补全频率分布直方图并求
的值(直接写结果);
(2)从年龄段在
的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中至少有1人年龄在
岁的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位有200名职工,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体
中,
分别是
的中点,
,过
三点的的平面截去长方体的一个角后.得到如图所示的几何体
,且这个几何体的体积为
.
![]()
(1)求证:
平面
;
(2)求
的长;
(3)在线段
上是否存在点
,使直线
与
垂直,如果存在,求线段
的长,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点坐标分别是
、
,并且经过点
.
(1)求椭圆
的方程;
(2)若直线
与圆
:
相切,并与椭圆
交于不同的两点
、
.当
,且满足
时,求
面积
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产一批
产品需要原材料500吨,每吨原材料可创造利润12万元,该公司通过设备升级,生产这批
产品所需原材料减少了
吨,且每吨原材料创造的利润提高了
;若将少用的
吨原材料全部用于生产公司新开发的
产品,每吨原材料创造的利润为
万元,其中
.
(1)若设备升级后生产这批
产品的利润不低于原来生产该批
产品的利润,求
的取值范围;
(2)若生产这批
产品的利润始终不高于设备升级后生产这批
产品的利润,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com