【题目】一个均匀的正方体玩具,各个面上分别写有1,2,3,4,5,6,将这个玩具先后抛掷2次,求:
(1)朝上的一面数相等的概率;
(2)朝上的一面数之和小于5的概率.
【答案】
(1)解:基本事件共6×6=36个:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).
朝上一面数相等的有6个,则朝上的一面数相等的概率P= ![]()
(2)解:由(1)知,朝上的一面数之和小于5有6个,
故朝上的一面数之和小于5的概率P= ![]()
【解析】(1)列举出所有36个基本事件,由古典概型的概率计算公式可求;(2)由(1)可知朝上一面数之和小于5包含的基本事件数,由古典概型概率计算公式可求;
科目:高中数学 来源: 题型:
【题目】如图所示,
是某海湾旅游区的一角,其中
,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸
和
上分别修建观光长廊
和AC,其中
是宽长廊,造价是
元/米,
是窄长廊,造价是
元/米,两段长廊的总造价为120万元,同时在线段
上靠近点
的三等分点
处建一个观光平台,并建水上直线通道
(平台大小忽略不计),水上通道的造价是
元/米.
(1) 若规划在三角形
区域内开发水上游乐项目,要求
的面积最大,那么
和
的长度分别为多少米?
(2) 在(1)的条件下,建直线通道
还需要多少钱?
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱柱
中,
底面
,底面
为菱形,
为
与
交点,已知
,
.
(I)求证:
平面
.
(II)在线段
上是否存在一点
,使得
平面
,如果存在,求
的值,如果不存在,请说明理由.
(III)设点
在
内(含边界),且
,求所有满足条件的点
构成的图形,并求
的最小值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的方程2x2﹣(
+1)x+m=0的两根为sinθ和cosθ,θ∈(0,π).求:
(1)m的值;
(2)
+
的值;![]()
(3)方程的两根及此时θ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是圆心为
的圆
上的动点,点
,
为坐标原点,线段
的垂直平分线交
于点
.
(1)求动点
的轨迹
的方程;
(2)过原点
作直线
交(1)中的轨迹
于点
,点
在轨迹
上,且
,点
满足
,试求四边形
的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
为公差不为
的等差数列,
为前
项和,
和
的等差中项为
,且
.令
数列
的前
项和为
.
(1)求
及
;
(2)是否存在正整数
成等比数列?若存在,求出所有的
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
:
的离心率为
,
为椭圆
的右焦点,
,
.
![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
为原点,
为椭圆上一点,
的中点为
,直线
与直线
交于点
,过
且平行于
的直线与直线
交于点
.求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com