精英家教网 > 高中数学 > 题目详情

【题目】如图所示, 是某海湾旅游区的一角,其中,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸上分别修建观光长廊AC,其中是宽长廊,造价是元/米, 是窄长廊,造价是元/米,两段长廊的总造价为120万元,同时在线段上靠近点的三等分点处建一个观光平台,并建水上直线通道(平台大小忽略不计),水上通道的造价是元/米.

(1) 若规划在三角形区域内开发水上游乐项目,要求的面积最大,那么的长度分别为多少米?

(2) 在(1)的条件下,建直线通道还需要多少钱?

【答案】(1)AC的长度分别为750米和1500米(2)万元

【解析】试题分析:(1)设长为米, 长为米,依题意得,即,表示面积,利用基本不等式可得结论;(2)利用向量方法,将表示为,根据向量的数量积与模长的关系可得结果.

试题解析:(1)设长为米, 长为米,依题意得

=

当且仅当,即时等号成立,

所以当的面积最大时, AC的长度分别为750米和1500米

(2)在(1)的条件下,因为

所以,建水上通道还需要万元.

解法二:在中,

中,

中,

=

所以,建水上通道还需要万元.

解法三:以A为原点,以AB轴建立平面直角坐标系,则

,即,设

,求得, 所以

所以,

所以,建水上通道还需要万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2﹣c2=ac﹣bc,
(1)求∠A的大小;
(2)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与抛物线相交于不同两点,与圆相切于点,且为线段中点

(1)是正三角形(是坐标原点),求此三角形的边长;

(2) 若,求直线的方程

(3)进行讨论,请你写出符合条件的直线(直接写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)满足:f(x)= ,且f(x+2)=f(x),g(x)= ,则方程f(x)=g(x)在区间[﹣5,1]上的所有实根之和为(
A.﹣5
B.﹣6
C.﹣7
D.﹣8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的图象与x轴的交点中,相邻两个交点之间的距离为 ,且图象上一个最高点为M( ,3).
(1)求f(x)的解析式;
(2)先把函数y=f(x)的图象向左平移 个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,试写出函数y=g(x)的解析式.
(3)在(2)的条件下,若总存在x0∈[﹣ ],使得不等式g(x0)+2≤log3m成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,角的对边分别为,且.

(1)求的值;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=4cos2x﹣4 sinxcosx的最小正周期为π(>0).
(1)求的值;
(2)若f(x)的定义域为[﹣ ],求f(x)的最大值与最小值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)若,求在区间[-1,2]上的取值范围;

(Ⅱ)若对任意 恒成立,记,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个均匀的正方体玩具,各个面上分别写有1,2,3,4,5,6,将这个玩具先后抛掷2次,求:
(1)朝上的一面数相等的概率;
(2)朝上的一面数之和小于5的概率.

查看答案和解析>>

同步练习册答案