精英家教网 > 高中数学 > 题目详情
(2012•淮北二模)已知向量
a
=(sin
θ
2
,cos(
θ
2
+
π
4
)),
b
=(
3
sin(
θ
2
+
π
4
),cos
θ
2
),θ∈(0,π),并且满足
a
b
、θ的值为(  )
分析:根据向量平行的充要条件,得sin
θ
2
cos
θ
2
-cos(
θ
2
+
π
4
)•
3
sin(
θ
2
+
π
4
)=0,结合二倍角的正弦公式和诱导公式化简整理,得sinθ-
3
cosθ=0,所以tanθ=
3
,结合θ∈(0,π),可得θ的值.
解答:解:∵向量
a
=(sin
θ
2
,cos(
θ
2
+
π
4
)),
b
=(
3
sin(
θ
2
+
π
4
),cos
θ
2
),
∴由
a
b
得:sin
θ
2
cos
θ
2
-cos(
θ
2
+
π
4
)•
3
sin(
θ
2
+
π
4
)=0
即2sin
θ
2
cos
θ
2
-2
3
cos(
θ
2
+
π
4
)sin(
θ
2
+
π
4
)=0,
结合二倍角的正弦公式,得sinθ-
3
sin(θ+
π
2
)=0,
即sinθ-
3
cosθ=0,得tanθ=
3

∵θ∈(0,π),∴θ=
π
3

故选:B
点评:本题给出含有三角函数坐标的两个向量平行,求角θ的值,着重考查了向量的坐标运算、特殊角的三角函数值和三角恒等变换等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•淮北二模)已知命P:a>1,Q:(a-1)(a+1)>0,P是Q成立的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北二模)已知圆C:x2+y2=1,过点P(0,2)作圆C的切线,交x轴正半轴于点Q、若M(m,n)为线段PQ上的动点,则
3
m
+
1
n
的最小值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北二模)已知定义域为R的函数f(x)满足:f(4)=-3,且对任意x∈R总有f′(x)<3,则不等式f(x)<3x-15的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北二模)设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若f(x)≤f(
π
6
)|对一切x∈R恒成立,则
①f(
11π
12
)=0;
②|f(
12
)|<|f(
π
5
)|;
③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是[kπ+
π
6
,kπ+
3
](k∈Z);
⑤经过点(a,b)的所有直线均与函数f(x)的图象相交.
以上结论正确的是
①③⑤
①③⑤
(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮北二模)在△ABC中a,b,c分别为角A,B,C所对的边的边长.
(1)试叙述正弦或余弦定理并证明之;
(2)设a+b+c=1,求证:a2+b2+c2
13

查看答案和解析>>

同步练习册答案