精英家教网 > 高中数学 > 题目详情
12.设数列{an}的前n项和为Sn,a1=1,an+1=λSn+1(n∈N*且λ≠-1),且a1,2a2,a3+3为等差数列{bn}的前3项.
(1)求数列{an},{bn}的通项公式;
(2)记cn=$\frac{1}{({b}_{n+1}-n)^{2}-1}$,设数列{cn}的前n项和为Tn,求Tn

分析 (1)通过an+1=λSn+1与an=λSn-1+1(n≥2)作差、整理可知an+1=(1+λ)an,进而可知数列{an}为以1为首项、公比为λ+1的等比数列,从而a3=(λ+1)2,通过a1、2a2、a3+3为等差数列{bn}的前三项可知λ=1,计算即得结论;
(2)通过bn=3n-2,裂项可知cn=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),并项相加即得结论.

解答 解:(1)∵an+1=λSn+1(n∈N*,λ≠-1),
∴当n≥2时,an=λSn-1+1,
∴an+1-an=λan,即an+1=(1+λ)an
又a1=1,a2=λa1+1=λ+1,
∴数列{an}为以1为首项、公比为λ+1的等比数列,
∴a3=(λ+1)2
又∵a1、2a2、a3+3为等差数列{bn}的前三项,
∴4(λ+1)=1+(λ+1)2+3,
整理得(λ-1)2=0,解得λ=1,
∴an=2n-1
bn=1+3(n-1)=3n-2;
(2)∵bn=3n-2,
∴cn=$\frac{1}{({b}_{n+1}-n)^{2}-1}$
=$\frac{1}{[3(n+1)-2-n]^{2}-1}$
=$\frac{1}{(2n+1+1)(2n+1-1)}$
=$\frac{1}{4}$•$\frac{1}{n(n+1)}$
=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Tn=$\frac{1}{4}$(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=$\frac{1}{4}$(1-$\frac{1}{n+1}$)
=$\frac{n}{4(n+1)}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=lnx+x2-2ax+a2,a∈R.
(1)若a=0,求函数f(x)在[$\frac{1}{2}$,1]上的最大值;
(2)若函数f(x)在[$\frac{1}{3}$,2]上存在单调递增区间,求a的取值范围;
(3)当a>$\sqrt{2}$时,求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设有数列1,2,2,3,3,3,4,4,4,4,….
(1)问10是该数列的第几项到第几项?
(2)求第100项;
(3)求前100项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=x3+x,x∈R,若0<θ<$\frac{π}{2}$时,不等式f(msinθ)+f(1-m)>0恒成立.则实数m的取值范围是(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.有两项调查:①某社区有300个家庭,其中高收入家庭105户,中等收入家庭180户,低收入家庭15户,为了了解社会购买力的某项指标,要从中抽出一个容量为100户的样本;②在某地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况.这两项调查宜采用的抽样方法是(  )
A.调查①采用系统抽样法,调查②采用分层抽样法
B.调查①采用分层抽样法,调查②采用系统抽样法
C.调查①采用分层抽样法,调查②采用抽签法
D.调查①采用抽签法,调查②采用系统抽样法

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列表达式中是离散型随机变量X的分布列的是(  )
A.P(X=i)=0.1,i=0,1,2,3,4B.P(X=i)=$\frac{{i}^{2}+5}{50}$,i=1,2,3,4,5
C.P(X=i)=$\frac{i}{10}$,i=1,2,3,4,5D.P(X=i)=0.2,i=1,2,3,4,5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数y=f(x)的图象如图所示
(1)函数y=f(x)的定义域是什么?
(2)函数y=f(x)的值域是什么?
(3)当x∈(-5,0]时,函数y=f(x)的值域是什么?
(4)y取何值时,只有唯一的x值与之相应?
(5)若y<2,求相应x的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设E,F分别是Rt△ABC的斜边BC上的两个三等分点,已知AB=6,AC=3,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知直线l1:y=k1x+1,l2:y=k2x-1,若l2与l2交点在椭圆2x2+y2=1上,则k1•k2=-2.

查看答案和解析>>

同步练习册答案