精英家教网 > 高中数学 > 题目详情
14.已知集合A={x|x>-1,x∈R},集合B={x|x<2,x∈R},则A∩B=(-1,2).

分析 根据交集的运算性质计算即可.

解答 解:A={x|x>-1,x∈R},B={x|x<2,x∈R},
则A∩B=(-1,2),
故答案为:(-1,2).

点评 本题考查了集合的交集的运算,熟练掌握交集的定义是解题的关键,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若抛物线y=2px2(p>0)的准线经过双曲线y2-x2=1的一个焦点,则p=$\frac{{\sqrt{2}}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.把函数f(x)=2sin(x+2φ)(|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{2}$个单位长度之后,所得图象关于直线$x=\frac{π}{4}$对称,且f(0)<f($\frac{π}{2}$-φ),则φ=(  )
A.$\frac{π}{8}$B.$\frac{3π}{8}$C.$-\frac{π}{8}$D.$-\frac{3π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|log2|1-x||,若函数g(x)=f2(x)+af(x)+2b有6个不同的零点,则这6个零点之和为(  )
A.7B.6C.$\frac{11}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数g(x)=ex(x+1).
(1)求函数g(x)在(0,1)处的切线方程;
(2)设x>0,讨论函数h(x)=g(x)-a(x3+x2)(a>0)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{lo{g}_{2}x(0<x≤1)}\end{array}\right.$的反函数是f-1(x),则f-1($\frac{1}{2}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,A1,A2为椭圆$\frac{x^2}{9}+\frac{y^2}{5}=1$长轴的左、右端点,O为坐标原点,S,Q,T为椭圆上不同于A1,A2的三点,直线QA1,QA2,OS,OT围成一个平行四边形OPQR,则|OS|2+|OT|2=(  )
A.14B.12C.9D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.正方形ABCD与等边三角形BCE有公共边BC,若∠ABE=120°,则BE与平面ABCD所成角的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=sinωx(ω>0),若函数y=f(x+a)(a>0)的部分图象如图所示,则ω=2,a的最小值是$\frac{π}{12}$.

查看答案和解析>>

同步练习册答案