精英家教网 > 高中数学 > 题目详情
14.设集合A={x|x2-6x+8<0},B={x|2<2x<8},则A∪B=(  )
A.{x|2<x<3}B.{x|1<x<3}C.{x|1<x<4}D.{x|3<x<4}

分析 把集合A,B分别解出来,根据并集的概念求解即可.

解答 解:(Ⅰ)∵A={x|x2-6x+8<0}={x|2<x<4},
B={x|2<2x<8}={x|1<x<3},
∴A∪B={x|1<x<4},
故选:C.

点评 本题考查一元二次不等式的解法,集合间运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,曲线C1:x2=-4y,曲线C2:x2+(y-m)2=1(m>0),过曲线C1上的一点P(2,-1)作曲线C1的切线l,且l与C2恰好相切,切点为Q.
(Ⅰ)求曲线C2与直线l的方程;
(Ⅱ)若点N为C2上任意一异于Q的动点,求△NPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:
甲校:
分组[70,80)[80,90)[90,100)[100,110)
频数231015
分组[110,120)[120,130)[130,140)[140,150]
频数15x31
乙校:
分组[70,80)[80,90)[90,100)[100,110)
频数1298
分组[110,120)[120,130)[130,140)[140,150]
频数1010y3
(Ⅰ)计算x,y的值;
(Ⅱ)若规定考试成绩在[120,150]内为优秀,请分别估计两个学校数学成绩的优秀率;
(Ⅲ)由以上统计数据填写右面2×2列联表,并判断是否有97.5%的把握认为两个学校的数学成绩有差异.
甲校乙校总计
优秀
非优秀
总计
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.100.050.025
k2.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若|x+a|-|x+1|<2a恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={1,2},B={a|a=2k-1,k∈A},则A∪B=(  )
A.{1}B.{1,2}C.{1,2,3}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在锐角三角形ABC中,若tanA,tanB,tanC依次成等差数列,则tanAtanC的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆C:(x-3)2+(y-5)2=5,过圆心C作直线l交圆于A、B两点,交y轴于点P,且2$\overrightarrow{PA}$=$\overrightarrow{PB}$,则直线l的方程为2x-y-1=0或2x+y-11=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的两条渐近线分别与抛物线y2=6x相交于点O外的A、B两点,若A、B的连线过双曲线的右顶点,且以双曲线C的右焦点为圆心的圆过O、A两点,则双曲线C的方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=(  )
A.$\frac{15}{8}$B.$\frac{16}{5}$C.5D.$\frac{20}{3}$

查看答案和解析>>

同步练习册答案