精英家教网 > 高中数学 > 题目详情

【题目】如图,多面体中,面,面.

1)求的大小;

2)若,求二面角的余弦值.

【答案】(1) (2)

【解析】

(1)中点,连接,再证明矩形,进而得到,从而得到为等腰直角三角形即可.

(2) ,.连接,即可证明为二面角的平面角,再分别计算三边的长度,利用余弦定理求解即可.

(1) 中点,连接.

因为,.又面,且交于.,.同理..共面.

,..

故四边形为平行四边形. .

,.,为等腰直角三角形.

(2),.连接.

因为分别为中点,,,.

.,.

为二面角的平面角.

又由(1),,故.又,故.

.

中,利用等面积法有,解得.

..故 .

.

即二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥,在平行四边形中,Q上的点,过的平面分别交于点EF,且平面.

1)证明:

2)若Q的中点,与平面所成角的正弦值为,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是梯形,,侧面底面

1)求证:平面平面

2)若,且三棱锥的体积为,求侧面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的看云识天气的经验,并将这些经验编成谚语,如天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证日落云里走,雨在半夜后,观察了所在地区A100天日落和夜晚天气,得到如下列联表:

夜晚天气

日落云里走

下雨

未下雨

出现

25

5

未出现

25

45

临界值表

P

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

并计算得到,下列小波对地区A天气判断不正确的是(

A.夜晚下雨的概率约为

B.未出现日落云里走夜晚下雨的概率约为

C.的把握认为“‘日落云里走是否出现当晚是否下雨有关

D.出现日落云里走,有的把握认为夜晚会下雨

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天津市某学校组织教师进行学习强国知识竞赛,规则为:每位参赛教师都要回答3个问题,且对这三个问题回答正确与否相互之间互不影响,若每答对1个问题,得1分;答错,得0分,最后按照得分多少排出名次,并分一、二、三等奖分别给予奖励.已知对给出的3个问题,教师甲答对的概率分别为p.若教师甲恰好答对3个问题的概率是,则________;在前述条件下,设随机变量X表示教师甲答对题目的个数,则X的数学期望为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年以来精准扶贫政策的落实,使我国扶贫工作有了新进展,贫困发生率由年底的下降到年底的,创造了人类减贫史上的的中国奇迹.“贫困发生率”是指低于贫困线的人口占全体人口的比例,年至年我国贫困发生率的数据如下表:

年份

2012

2013

2014

2015

2016

2017

2018

贫困发生率

10.2

8.5

7.2

5.7

4.5

3.1

1.4

(1)从表中所给的个贫困发生率数据中任选两个,求两个都低于的概率;

(2)设年份代码,利用线性回归方程,分析年至年贫困发生率与年份代码的相关情况,并预测年贫困发生率.

附:回归直线的斜率和截距的最小二乘估计公式分别为:

(的值保留到小数点后三位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】约公元前600年,几何学家泰勒斯第一个测出了金字塔的高度.如图,金字塔是正四棱锥,泰勒斯先测量出某个金字塔的底棱长约为230米;然后,他站立在沙地上,请人不断测量他的影子,当他的影子和身高相等时,他立刻测量出该金字塔影子的顶点A与相应底棱中点B的距离约为222米.此时,影子的顶点A和底面中心O的连线恰好与相应的底棱垂直,则该金字塔的高度约为( )

A.115B.1372C.230D.2522

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019新型冠状病毒(2019nCoV)于2020112日被世界卫生组织命名.冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.某医院对病患及家属是否带口罩进行了调查,统计人数得到如下列联表:

戴口罩

未戴口罩

总计

未感染

30

10

40

感染

4

6

10

总计

34

16

50

1)根据上表,判断是否有95%的把握认为未感染与戴口罩有关;

2)从上述感染者中随机抽取3人,记未戴口罩的人数为,求的分布列和数学期望.

参考公式:,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,函数 .

(Ⅰ)若有公共点,且在点处切线相同,求该切线方程;

(Ⅱ)若函数有极值但无零点,求实数的取值范围;

(Ⅲ)当 时,求在区间的最小值.

查看答案和解析>>

同步练习册答案