分析 令t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],利用同角三角的基本关系,二次函数的性质,求得y的最大值.
解答 解:函数y=(sin x-2)(cos x-2)=sinxcosx-2(sinx+cosx)+4,
令t=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],
则t2=1+2sinxcosx,sinxcosx=$\frac{{t}^{2}-1}{2}$,
∴y=$\frac{{t}^{2}-1}{2}$-2t+4=$\frac{1}{2}$(t2-4t+4)+2=$\frac{1}{2}$•(t-2)2+2,
故当t=-$\sqrt{2}$时,函数y取得最大值 $\frac{9}{2}$+2$\sqrt{2}$,
故答案为:$\frac{9}{2}$+2$\sqrt{2}$.
点评 本题主要考查同角三角的基本关系,二次函数的性质的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$$\sqrt{22}$ | B. | $\frac{4}{3}$$\sqrt{66}$ | C. | $\sqrt{66}$ | D. | 4$\sqrt{66}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{16}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为π | |
| B. | 直线x=$\frac{π}{12}$是函数f(x)图象的对称轴 | |
| C. | 函数f(x)的图象关于点(-$\frac{π}{6}$,0)对称 | |
| D. | 函数f(x)在区间(-$\frac{π}{12}$,$\frac{5π}{12}$)上单调递增 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 成绩等级 | A | B | C | D | E |
| 成绩(分) | 100 | 85 | 70 | 60 | 50以下 |
| 人数(名) | 1 | a | b | 8 | c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com