精英家教网 > 高中数学 > 题目详情
4.已知矩阵A=$[\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$,向量$\overrightarrow{a}$=$[\begin{array}{l}{5}\\{3}\end{array}]$,计算A5$\overrightarrow{a}$.

分析 令f(λ)=$|\begin{array}{l}{λ-1}&{-2}\\{1}&{λ-4}\end{array}|$=λ2-5λ+6=0,解得λ=2或3.分别对应的一个特征向量为$[\begin{array}{l}{2}\\{1}\end{array}]$;$[\begin{array}{l}{1}\\{1}\end{array}]$.设$[\begin{array}{l}{5}\\{3}\end{array}]$=m$[\begin{array}{l}{2}\\{1}\end{array}]$++n$[\begin{array}{l}{1}\\{1}\end{array}]$.解得m,n,即可得出.

解答 解:∵f(λ)=$|\begin{array}{l}{λ-1}&{-2}\\{1}&{λ-4}\end{array}|$=λ2-5λ+6,由f(λ)=0,解得λ=2或3.
当λ=2时,对应的一个特征向量为α1=$[\begin{array}{l}{2}\\{1}\end{array}]$;当λ=3时,对应的一个特征向量为α2=$[\begin{array}{l}{1}\\{1}\end{array}]$.
设$[\begin{array}{l}{5}\\{3}\end{array}]$=m$[\begin{array}{l}{2}\\{1}\end{array}]$++n$[\begin{array}{l}{1}\\{1}\end{array}]$.解得$\left\{\begin{array}{l}{m=2}\\{n=1}\end{array}\right.$.
∴A5$\overrightarrow{a}$=2×25$[\begin{array}{l}{2}\\{1}\end{array}]$+1×35$[\begin{array}{l}{1}\\{1}\end{array}]$=$[\begin{array}{l}{371}\\{307}\end{array}]$.

点评 本题考查了矩阵与变换、特征向量,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数y=(sin x-2)(cos x-2)的最大值是$\frac{9}{2}$+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.不等式$1+\sqrt{3}tanx≥0$,x∈[0,π)的解集是$[0,\frac{π}{2})∪[\frac{5π}{6},π)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知线段PD垂直于正方形ABCD所在平面,D为垂足,PD=3,AB=4,连接PA、PB、PC.
(1)求证:平面PBC⊥平面PDC;
(2)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆E的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,取相同单位长度(其中ρ≥0,θ∈[0,2π)).
(1)直线l过原点,且它的倾斜角α=$\frac{3π}{4}$,求l与圆E的交点A的极坐标(点A不是坐标原点);
(2)直线m过线段OA中点M,且直线m交圆E于B、C两点,求|MB|•|MC|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知:lga和lgb(a>0,b>0)是方程x2-2x-4=0的两个不相等实根,则a•b=100.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若x3+a3=(x-3)(x2+3x+9)对任意实数x都成立,则实数a的值是(  )
A.-9B.9C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=log2(1+x)+$\sqrt{8-{2}^{x}}$的定义域为(  )
A.(-1,3)B.(0,3]C.(0,3)D.(-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线y2=2px(p>0)的准线与圆(x-2)2+y2=16相切,则p=4.

查看答案和解析>>

同步练习册答案