精英家教网 > 高中数学 > 题目详情
12.已知线段PD垂直于正方形ABCD所在平面,D为垂足,PD=3,AB=4,连接PA、PB、PC.
(1)求证:平面PBC⊥平面PDC;
(2)求二面角A-PB-C的余弦值.

分析 (1)推导出PD⊥BC,DC⊥BC,从而BC⊥平面PDC,由此能证明平面PBC⊥平面PDC.
(2)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,利用向量法能求出二面角A-PB-C的余弦值.

解答 证明:(1)∵线段PD垂直于正方形ABCD所在平面,BC?平面ABCD,
∴PD⊥BC,DC⊥BC,
∵PD∩DC=D,∴BC⊥平面PDC,
∵BC?平面PDC,∴平面PBC⊥平面PDC.
解:(2)以D为原点,DA为x轴,DC为y轴,
DP为z轴,建立空间直角坐标系,
则A(4,0,0),B(4,4,0),C(0,4,0),
P(0,0,4),
$\overrightarrow{PB}$=(4,4,-4),$\overrightarrow{PA}$=(4,0,-4),
$\overrightarrow{PC}$=(0,4,-4),
设平面PAB的法向量$\overrightarrow{m}$=(a,b,c),
$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PB}=4a+4b-4c=0}\\{\overrightarrow{m}•\overrightarrow{PA}=4a-4c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,0,1),
平面PBC的法向量为$\overrightarrow{n}$=(x,y,z),
$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=4x+4y-4z=0}\\{\overrightarrow{n}•\overrightarrow{PC}=4y-4z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,1),
设二面角A-PB-C的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{2}$,
∴二面角A-PB-C的余弦值为$\frac{1}{2}$.

点评 本题考查面面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知实数x,y可以在0<x<2,0<y<2的条件下随机取数,那么取出的数对满足x2+(y-1)2<1的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{16}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C:ρsin2θ=2cosθ,过定点P(-2,-4)的直线l的参数方程为$\left\{\begin{array}{l}x=-2+\frac{{\sqrt{2}}}{2}t\\ y=-4+\frac{{\sqrt{2}}}{2}t\end{array}\right.(t为参数)$,若直线l和曲线C相交于M、N两点.
(Ⅰ)求曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)证明:|PM|、|MN|、|PN|成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,圆内接四边形ABCD的边BC与AD的延长线交于点E,点F在BA的延长线上.
(1)若EF∥CD,证明:EF2=FA•FB;
(2)若EB=3EC,EA=2ED,求$\frac{DC}{AB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知曲线C的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系,若倾斜角为$\frac{π}{3}$的直线l经过点P(4,2).
(Ⅰ)写出直线l的参数方程,并将曲线C的极坐标方程化为直角坐标系方程;
(Ⅱ)若直线l与曲线C交于不同的两点A、B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边长分别为a,b,c,B=45°,b=3.
(Ⅰ)若cosC+$\sqrt{2}$cosA=1,求A和c的值;
(Ⅱ)若$\overrightarrow m$=(2sin$\frac{A}{2}$,-1),$\overrightarrow n$=($\sqrt{3}$cos$\frac{A}{2}$,2sin2$\frac{A}{2}}$),f(A)=$\overrightarrow m$•$\overrightarrow n$,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知矩阵A=$[\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$,向量$\overrightarrow{a}$=$[\begin{array}{l}{5}\\{3}\end{array}]$,计算A5$\overrightarrow{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x,y满足x2+y2=1,则x+$\sqrt{3}$y的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.三棱锥S-ABC中,正三角形ABC的边长为$2\sqrt{3}$,SA=SB=2,二面角S-AB-C的平面角的大小为60°,则SC=$\sqrt{7}$.

查看答案和解析>>

同步练习册答案