精英家教网 > 高中数学 > 题目详情
1.已知实数x,y可以在0<x<2,0<y<2的条件下随机取数,那么取出的数对满足x2+(y-1)2<1的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{16}$D.$\frac{π}{2}$

分析 本题属于几何概型的概率求法,只要明确变量对应的区域面积,利用面积比求概率.

解答 解:由题意,0<x<2,0<y<2的区域为边长为2 的正方形,面积为4,而在此条件下满足x2+(y-1)2<1的区域如图,
面积为$\frac{π}{2}$,由几何概型的公式得到所求概率为$\frac{\frac{π}{2}}{4}=\frac{π}{8}$;
故答案为:B

点评 本题考查了几何概型的概率求法;关键是正确选择测度,利用面积比求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知集合M={x|x2-3x+2=0},N={x|x2-2x+a=0},若N⊆M,则实数a的取值范围为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知A={(x,y)|x+y≤8,x≥0,y≥0},B={(x,y)|x≤2,3x-y≥0},若向区域A随机投一点P,则点P落入区域B的概率为$\frac{3}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{log_a}({\frac{1}{x+1}})({-1<x<1})\\ f({2-x})-a+1({1<x<3})\end{array}\right.$,(a>0,a≠1),若x1≠x2,则f(x1)=f(x2)时,x1+x2与2的大小关系是(  )
A.恒小于2B.恒大于2C.恒等于2D.与a相关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2-1≥0},B={x||x|=1},则A∩B=(  )
A.{x|x≥1或x≤-1}B.{x|-1≤x≤1}C.{-1,1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某同学在只听课不做作业的情况下,数学总不及格.后来他终于下定决心要改变这一切,他以一个月为周期,每天都作一定量的题,看每次月考的数学成绩,得到5个月的数据如下表:
一个月内每天做题数x58647
数学月考成绩y8287848186
根据上表得到回归直线方程$\widehaty$=1.6x+a,若该同学数学想达到90分,则估计他每天至少要做的数学题数为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=(sin x-2)(cos x-2)的最大值是$\frac{9}{2}$+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的各项均为正数,其前n项和为Sn,且满足Sn=2an-a1,n∈N*
(Ⅰ)若a1=1,求数列{an}的通项公式;
(Ⅱ)若对于正整数m,p,q(m<p<q),5am,ap,aq这三项经过适当的排序后能构成等差数列,试用m表示p和q;
(Ⅲ)已知数列{tn},{rn}满足|tn|=|rn|=an,数列{tn},{rn}的前100项和分别为T100,R100,且T100=R100,试问:是否对于任意的正整数k(1≤k≤100)均有tk=rk成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知线段PD垂直于正方形ABCD所在平面,D为垂足,PD=3,AB=4,连接PA、PB、PC.
(1)求证:平面PBC⊥平面PDC;
(2)求二面角A-PB-C的余弦值.

查看答案和解析>>

同步练习册答案