精英家教网 > 高中数学 > 题目详情
9.已知:lga和lgb(a>0,b>0)是方程x2-2x-4=0的两个不相等实根,则a•b=100.

分析 根据题意,由根与系数的关系可得lga+lgb=2,由对数的运算性质可得答案.

解答 解:根据题意,lga和lgb分别是x2-2x-4=0的两个根,
则有lga+lgb=2,
而lga+lgb=lgab,
则有lgab=2,即ab=100,
故答案为:100.

点评 本题考查对数的运算,熟练运用对数的运算性质以及根与系数的关系是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=sin(2x+$\frac{π}{3}$),下列判断错误的是(  )
A.函数f(x)的最小正周期为π
B.直线x=$\frac{π}{12}$是函数f(x)图象的对称轴
C.函数f(x)的图象关于点(-$\frac{π}{6}$,0)对称
D.函数f(x)在区间(-$\frac{π}{12}$,$\frac{5π}{12}$)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,圆内接四边形ABCD的边BC与AD的延长线交于点E,点F在BA的延长线上.
(1)若EF∥CD,证明:EF2=FA•FB;
(2)若EB=3EC,EA=2ED,求$\frac{DC}{AB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C所对的边长分别为a,b,c,B=45°,b=3.
(Ⅰ)若cosC+$\sqrt{2}$cosA=1,求A和c的值;
(Ⅱ)若$\overrightarrow m$=(2sin$\frac{A}{2}$,-1),$\overrightarrow n$=($\sqrt{3}$cos$\frac{A}{2}$,2sin2$\frac{A}{2}}$),f(A)=$\overrightarrow m$•$\overrightarrow n$,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知矩阵A=$[\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$,向量$\overrightarrow{a}$=$[\begin{array}{l}{5}\\{3}\end{array}]$,计算A5$\overrightarrow{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.方程|x-5|+x-5=0的解为x≤5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x,y满足x2+y2=1,则x+$\sqrt{3}$y的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足条件:对任意的n∈N*,点(1,n2)在函数f(x)=a1x+a2x2+a3x3+…+anxn(n∈N*)的图象上,g(x)=$\frac{2x}{x+1}$,数列{bn}满足b1=$\frac{2}{3}$,bn+1=g(bn),n∈N*
(1)求数列{an}与{bn}的通项公式;
(2)试比较f($\frac{1}{2}$)与bn的大小(其中n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知在二项式($\sqrt{x}$-$\frac{a}{{\root{3}{x}}}$)n的展开式中,各项的二项式系数之和为32,且常数项为80,则n的值为5,实数a的值为-2.

查看答案和解析>>

同步练习册答案