(1)本小题根据题意可得
,分别令n=2,3,4,5不难求解。
(2)由(1)中的前5项,不难归纳出
,然后再采用数学归纳法进行证明。
要分两个步骤来进行:第一步验证:当n=1时,式子成立;
第二步:先假设n=k时,等式成立,再证明n=k+1时,等式也成立,在证明过程中必须要用上归纳假设。
(1)由已知
,
,分别取
,
得
,
,
,
,
所以数列的前5项是:
,
.-----------4分
(2)由(1)中的分析可以猜想
.————————————6分
下面用数学归纳法证明:
①当
时,公式显然成立.
②假设当
时成立,即
,那么由已知,
得
,
即
,
所以
,即
,
又由归纳假设,得
,
所以
,即当
时,公式也成立.—————————10分
由①和②知,对一切
,都有
成立.------------------12分