精英家教网 > 高中数学 > 题目详情
用数学归纳法证明等式,第二步,“假设当
时等式成立,则当时有
”,其中              .
由于n=k+1时,左边=,
所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*).求a2,a3,a4及b2,b3,b4,由此猜测{an},{bn}的通项公式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列中,,且前项的算术平均数等于第项的倍()。
(1)写出此数列的前5项;      (2)归纳猜想的通项公式,并加以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正数数列中,前项和为,且
用数学归纳法证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在各项为正的数列中,数列的前n项和满足

(1)求;(2) 由(1)猜想数列的通项公式;(3) 求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

时,
(I)求;
(II)猜想的关系,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列的前和为,其中
(1)求(2)猜想数列的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明时,假设n=k时命题成立,则当n=k+1时,左端增加的项数是                             (  )
A.1项B.C.D.

查看答案和解析>>

同步练习册答案