精英家教网 > 高中数学 > 题目详情
已知数列的前和为,其中
(1)求(2)猜想数列的通项公式,并用数学归纳法加以证明.
解答:(1)       
,则,类似地求得
(2)由
猜得:
以数学归纳法证明如下:
①当时,由(1)可知等式成立;
②假设当时猜想成立,即
那么,当时,由题设

所以


因此
所以
这就证明了当时命题成立.
由①、②可知命题对任何都成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题8分)已知数列中,,且
(1)求的值;
(2)写出数列的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.用数学归纳法证明时,由k到k+1,不等式左端的变化是(    )
A.增加B.增加两项
C.增加两项且减少一项D.以上结论均错

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*).
(1)试求出S1,S2,S3,S4,并猜想Sn的表达式;
(2)证明你的猜想,并求出an的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用数学归纳法证明等式,第二步,“假设当
时等式成立,则当时有
”,其中              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则对于
          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明“”时,
的假设证明时,如果从等式左边证明右边,则必须证得右边为(   )
A           B、
C、           D、

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明1+a+a2+…+an+1=(n∈N,a≠1),在验证n=1成立时,等式左边所得的项为( )
A.1B.1+aC.1+a+a2D.1+a+a2+a3.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)用数学归纳法证明等式对所以n∈N*均成立.
            

查看答案和解析>>

同步练习册答案