精英家教网 > 高中数学 > 题目详情
15.2名男生和3名女生共5名同学站成一排,则3名女生中有且只有2名女生相邻的概率是$\frac{3}{5}$.

分析 利用捆绑法求出3名女生中有且只有2名女生相邻的情况,有A32A22A32=72种,2名男生和3名女生共5名同学站成一排,有A55=120种,问题得以解决.

解答 解:把3位女生的两位捆绑在一起看做一个复合元素,和剩下的一位女生,插入到2位男生全排列后形成的3个空中的2个空中,有A32A22A32=72种,
2名男生和3名女生共5名同学站成一排,有A55=120种,
∴所求概率为$\frac{72}{120}$=$\frac{3}{5}$,
故答案为$\frac{3}{5}$.

点评 本题考查概率的计算,考查排列中相邻问题和不相邻问题,相邻用捆绑,不相邻用插空,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(其中φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(tanα•cosθ-sinθ)=1(α为常数,0<α<π,且α≠$\frac{π}{2}$),点A,B(A在x轴下方)是曲线C1与C2的两个不同交点.
(1)求曲线C1普通方程和C2的直角坐标方程;
(2)求|AB|的最大值及此时点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=x2ln|$\frac{{{2^x}-1}}{{{2^x}+1}}$|的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{-2-i}{i}$=(  )
A.1-2iB.1+2iC.-1-2iD.-1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{x^2}{4}+{y^2}=1$,点P是椭圆C上任意一点,且点M满足$\left\{\begin{array}{l}{x_M}=2λ{x_P}\\{y_M}=λ{y_P}\end{array}\right.$(λ>1,λ是常数).当点P在椭圆C上运动时,点M形成的曲线为Cλ
(Ⅰ)求曲线Cλ的轨迹方程;
(Ⅱ)过曲线Cλ上点M做椭圆C的两条切线MA和MB,切点分别为A,B.
①若切点A的坐标为(x1,y1),求切线MA的方程;
②当点M运动时,是否存在定圆恒与直线AB相切?若存在,求圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.为了得到函数$y=2sin(x+\frac{π}{6})cos(x+\frac{π}{6})$的图象,只需把函数y=sin2x的图象上所有的点(  )
A.向左平行移动$\frac{π}{12}$个单位长度B.向右平行移动$\frac{π}{12}$个单位长度
C.向左平行移动$\frac{π}{6}$个单位长度D.向右平行移动$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥BD,PA=AC=2AD=4,AB=BC=2$\sqrt{5}$,M,N,E分别为PD,PB,CD的中点.
(1)求证:平面MBE⊥平面PAC;
(2)求二面角M-AC-N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为π,且其图象向右平移$\frac{π}{6}$个单位后得到函数g(x)=sinωx的图象,则φ等于(  )
A.-$\frac{π}{3}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面直角坐标系xOy中,将不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-2≤0}\\{y≥0}\end{array}\right.$表示的平面区域绕x轴旋转一周所形成的几何体的表面积是(  )
A.B.($\sqrt{2}$+$\sqrt{5}$+1)πC.(2$\sqrt{2}$+2$\sqrt{5}$)πD.($\sqrt{2}$+$\sqrt{5}$)π

查看答案和解析>>

同步练习册答案