| A. | 6π | B. | ($\sqrt{2}$+$\sqrt{5}$+1)π | C. | (2$\sqrt{2}$+2$\sqrt{5}$)π | D. | ($\sqrt{2}$+$\sqrt{5}$)π |
分析 画出约束条件的可行域,利用图形求解旋转体的表面积即可.
解答
解:不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-2≤0}\\{y≥0}\end{array}\right.$表示的平面区域如图:
A(0,1),B(-1,0),C(2,0),
将不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-2≤0}\\{y≥0}\end{array}\right.$表示的平面区域绕x轴旋转一周所形成的几何体是两个圆锥形成的组合体,AB=$\sqrt{2}$,AC=$\sqrt{5}$,
它的表面积:$\frac{1}{2}×2π(\sqrt{2}+\sqrt{5})$=($\sqrt{2}$+$\sqrt{5}$)π.
故选:D.
点评 本题考查线性规划的简单应用,旋转体的表面积的求法,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π2 | B. | 4π2 | C. | 8π2 | D. | 16π2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{256}$ | C. | 64 | D. | $\frac{1}{64}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com