精英家教网 > 高中数学 > 题目详情
16.过双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点F的直线l:y=$\sqrt{3}x-4\sqrt{3}$与C只有一个公共点,则C的焦距为8,C的离心率为2.

分析 结合双曲线的性质$\frac{b}{a}$=$\sqrt{3}$,0=$\sqrt{3}$c-4$\sqrt{3}$,求出a,c即可.

解答 解:过双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线方程为y=±$\frac{b}{a}$x,
因为过双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点F的直线l:y=$\sqrt{3}x-4\sqrt{3}$与C只有一个公共点,
所以$\frac{b}{a}$=$\sqrt{3}$,0=$\sqrt{3}$c-4$\sqrt{3}$,
又因为a2+b2=c2
解得c=3,a=$\frac{3}{2}$,
所以2c=8,e=$\frac{c}{a}$=2,
故答案为:8,2

点评 本题给出双曲线方程,求经过双曲线的右交点且与双曲线只有一个公共点的直线的条数.着重考查了直线的方程、双曲线的标准方程与简单几何性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)=x2ln|$\frac{{{2^x}-1}}{{{2^x}+1}}$|的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥BD,PA=AC=2AD=4,AB=BC=2$\sqrt{5}$,M,N,E分别为PD,PB,CD的中点.
(1)求证:平面MBE⊥平面PAC;
(2)求二面角M-AC-N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为π,且其图象向右平移$\frac{π}{6}$个单位后得到函数g(x)=sinωx的图象,则φ等于(  )
A.-$\frac{π}{3}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某宣传部门网站为弘扬社会主义思想文化,开展了以核心价值观为主题的系列宣传活动,并以“社会主义核心价值观”作为关键词便于网民搜索.此后,该网站的点击量每月都比上月增长50%,那么4个月后,该网站的点击量和原来相比,增长为原来的(  )
A.2倍以上,但不超过3倍B.3倍以上,但不超过4倍
C.4倍以上,但不超过5倍D.5倍以上,但不超过6倍

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x+a)ln(a-x).
(Ⅰ)当a=1时,求曲线y=f(x)在x=0处的切线方程;
(Ⅱ)当a=e时,求证:函数f(x)在x=0处取得最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式组$\left\{\begin{array}{l}x≥2\\ x+y≥6\\ x-2y≤0\end{array}\right.$所表示的平面区域为Ω,若直线ax-y+a+1=0与Ω有公共点,则实数a的最小值为(  )
A.$-\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面直角坐标系xOy中,将不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-2≤0}\\{y≥0}\end{array}\right.$表示的平面区域绕x轴旋转一周所形成的几何体的表面积是(  )
A.B.($\sqrt{2}$+$\sqrt{5}$+1)πC.(2$\sqrt{2}$+2$\sqrt{5}$)πD.($\sqrt{2}$+$\sqrt{5}$)π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若等比数列{an}的前n项和${S_n}={2^{n-1}}+a$,则a3a5=(  )
A.4B.8C.16D.32

查看答案和解析>>

同步练习册答案