精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=(x+a)ln(a-x).
(Ⅰ)当a=1时,求曲线y=f(x)在x=0处的切线方程;
(Ⅱ)当a=e时,求证:函数f(x)在x=0处取得最值.

分析 (I)利用f'(0)=k切线斜率,可得切线方程.
(Ⅱ)证法一:定义域(-∞,e).函数a=e,$f'(x)=ln(e-x)+\frac{x+e}{x-e}$,f(0)=e,$f'(x)=ln(e-x)+\frac{2e}{x-e}+1$.当x∈(-∞,e)时,y=ln(e-x),$y=\frac{2e}{x-e}+1$,均为减函数,可得f'(x)在(-∞,e)上单调递减,又f'(0)=0,即可证明.
证法二:当x∈(-∞,0)时,证明f′(x)>0,可得f(x)在(-∞,0)上单调递增;  当x∈(0,e),证明f′(x)<0,f(x)在x∈(0,e)上单调递减,即可证明结论.

解答 (Ⅰ)解:因为a=1,$f'(x)=ln(1-x)+\frac{x+1}{x-1}$,…(2分)
f'(0)=-1,所以k=-1…(3分)
因为f(0)=0所以切点为(0,0),…(4分)
则切线方程为y=-x…(5分)
(Ⅱ)证明:
证法一:定义域(-∞,e).
函数a=e,所以$f'(x)=ln(e-x)+\frac{x+e}{x-e}$…(6分),
f(0)=e,$f'(x)=ln(e-x)+\frac{2e}{x-e}+1$.
当x∈(-∞,e)时,y=ln(e-x),$y=\frac{2e}{x-e}+1$,均为减函数      …(7分)
所以f'(x)在(-∞,e)上单调递减;  …(8分)
又f'(0)=0,
因为当x∈(-∞,0)时,$f'(x)=ln(e-x)+\frac{2e}{x-e}+1>0$,…(9分)
f(x)在(-∞,0)上单调递增;                                …(10分)
又因为当x∈(0,e),$f'(x)=ln(e-x)+\frac{2e}{x-e}+1<0$…(11分)
f(x)在x∈(0,e)上单调递减;                              …(12分)
因为f(0)=0,所以f(x)在x=0处取得最大值.           …(13分)
证法二:当x∈(-∞,0)时,-x>0,e-x>e,ln(e-x)>lne=1,ln(e-x)+1>2…(7分)
又因为x<0,$x-e<-e,\frac{1}{x-e}>\frac{1}{-e},\frac{2e}{x-e}>\frac{2e}{-e}=-2,\frac{2e}{x-e}>-2$…(8分)
∴$f'(x)=ln(e-x)+\frac{2e}{x-e}+1>0$,f(x)在(-∞,0)上单调递增;        …(9分)
当x∈(0,e),-x∈(-e,0),e-x∈(0,e),ln(e-x)<1,…(10分)
又因为x∈(0,e),$-e<x-e<0,\frac{1}{x-e}<\frac{1}{-e},\frac{2e}{x-e}<\frac{2e}{-e}=-2,\frac{2e}{x-e}<-2$…(11分)
∴$f'(x)=ln(e-x)+\frac{2e}{x-e}+1<0$,f(x)在x∈(0,e)上单调递减;       …(12分)
又因为f(0)=0,所以f(x)在x=0处取得最大值.                   …(13分)

点评 本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(ax2-bx)ex(其中e是自然对数的底数,a,b∈R)的图象在A(0,f(0))处的切线与直线x+y+2=0垂直.
(Ⅰ)当a=-$\frac{1}{2}$时,求函数f(x)的极值点;
(Ⅱ)若f(x)≤x在[-1,0]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x2-2x+a-1|-a2-2a.
(1)当a=3时,求f(x)≥-10的解集;
(2)若f(x)≥0对x∈R恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是互相垂直的两个单位向量,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=4$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,则(  )
A.$\overrightarrow{a}$∥$\overrightarrow{b}$B.$\overrightarrow{a}$⊥$\overrightarrow{b}$C.|$\overrightarrow{a}$|=2|$\overrightarrow{b}$||D.<$\overrightarrow{a}$,$\overrightarrow{b}$>=60°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点F的直线l:y=$\sqrt{3}x-4\sqrt{3}$与C只有一个公共点,则C的焦距为8,C的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题p:对任意x∈R,总有2x>x2;q:“ab>4”是“a>2,b>2”的充分不必要条件,则下列命题为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等比数列{an},且a6+a8=$\int_0^4{\sqrt{16-{x^2}}dx}$,则a8(a4+2a6+a8)的值为(  )
A.π2B.2C.2D.16π2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{an}是等比数列,an>0,a3=12,且a2,a4,a2+36成等差数列.
(1)求数列{an}的通项公式;
(2)设{bn}是等差数列,且b3=a3,b9=a5,求b3+b5+b7+…+b2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=sin({2x+\frac{π}{6}})+2{cos^2}x$.
(1)作出函数y=f(x)在一个周期内的图象,并写出其单调递减区间;
(2)当$x∈[{0,\frac{π}{2}}]$时,求f(x)的最大值与最小值.

查看答案和解析>>

同步练习册答案