精英家教网 > 高中数学 > 题目详情
6.已知命题p:对任意x∈R,总有2x>x2;q:“ab>4”是“a>2,b>2”的充分不必要条件,则下列命题为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

分析 先判断命题p,q的真假,再利用复合命题真假的判定方法即可得出.

解答 解:命题p:对任意x∈R,总有2x>x2;是假命题,例如取x=2,则不成立.
q:由a>2,b>2⇒ab>4;反之不成立,例如取a=12,b=1.
因此“ab>4”是“a>2,b>2”的必要不充分条件,因此是假命题.
则下列命题为真命题的是¬p∧¬q.
故选:D.

点评 本题考查了函数与不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图所示,直角梯形ABCD两条对角线AC,BD的交点为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,M为线段AB上一点,AM=2MB,且AB⊥BC,AB∥CD,AB=BE=6,CD=BC=3.
(I)求证:EM∥平面ADF;
(Ⅱ)求二面角O-EF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}为等差数列,且a2016+a2018=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,则a2017的值为(  )
A.$\frac{π}{2}$B.C.π2D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知i是虚数单位,则复数$\frac{1-i}{1+i}$在复平面上所对应的点的坐标是(0,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x+a)ln(a-x).
(Ⅰ)当a=1时,求曲线y=f(x)在x=0处的切线方程;
(Ⅱ)当a=e时,求证:函数f(x)在x=0处取得最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.大厦一层有A,B,C,D四部电梯,3人在一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有36种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆C1:x2+y2=r2(r>0)与直线l0:y=$\frac{1}{2}x+\frac{3}{2}\sqrt{5}$相切,点A为圆C1上一动点,AN⊥x轴于点N,且动点M满足$\overrightarrow{OM}+2\overrightarrow{AM}=({2\sqrt{2}-2})\overrightarrow{ON}$,设动点M的轨迹为曲线C.
(1)求动点M的轨迹曲线C的方程;
(2)若直线l与曲线C相交于不同的两点P、Q且满足以PQ为直径的圆过坐标原点O,求线段PQ长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x+2|+|x-1|.
(1)证明:f(x)≥f(0);
(2)若?x∈R,不等式2f(x)≥f(a+1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x+3|+|2x-4|.
(1)当x∈[-3,3]时,解关于x的不等式f(x)<6;
(2)求证:?t∈R,f(x)≥4-2t-t2

查看答案和解析>>

同步练习册答案