分析 (1)通过讨论a的范围,求出不等式的解集即可;
(2)求出f(x)的分段函数的形式,求出f(x)的最小值,得到关于t的不等式,证出即可.
解答 解:(1)当-3≤x≤2时,f(x)=x+3-(2x-4)=-x+7,
故原不等式可化为-x+7<6,
解得:x>1,故1<x≤2;
当2<x≤3时,f(x)=x+3+(2x-4)=3x-1,
故原不等式可化为3x-1<6,解得$2<x<\frac{7}{3}$;
综上,可得原不等式的解集为$\left\{{x|1<x<\frac{7}{3}}\right\}$.
(2)证明:$f(x)=\left\{{\begin{array}{l}{-3x+1,x≤-3}\\{-x+7,-3<x≤2}\\{3x-1,x>2}\end{array}}\right.$,![]()
由图象,可知f(x)≥5,
又因为4-2t-t2=-(t+1)2+5≤5,
所以f(x)≥4-2t-t2.
点评 本题考查了解绝对值不等式问题,考查分类讨论思想以及转化思想,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | ¬p∧¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{7}$ | C. | 3 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{8}{5}$ | B. | $\frac{9}{5}$ | C. | $-\frac{9}{5}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com