分析 求出切线方程,可得M的坐标,利用$\overrightarrow{PM}$=λ$\overrightarrow{PN}$,即可得出结论.
解答 解:设A(x1,$\frac{1}{2p}$x12),B(x2,$\frac{1}{2p}$x22),P(x0,y0)
由抛物线C:x2=2py得抛物线C的方程为y=$\frac{1}{2p}$x2,∴y′=$\frac{x}{p}$
∴PA:y-$\frac{1}{2p}$x12=$\frac{{x}_{1}}{p}$(x-x1)①,PB::y-$\frac{1}{2p}$x22=$\frac{{x}_{2}}{p}$(x-x2)②
联立①②可得x1,x2是方程t2-2x0t+2py0=0的两个根,
∴x1+x2=2x0,x1x2=2py0,
线段AB的中点为M(x0,$\frac{{{x}_{0}}^{2}}{p}$-y0),
又N(x0,$\frac{{{x}_{0}}^{2}}{2p}$),
∵$\overrightarrow{PM}$=λ$\overrightarrow{PN}$,∴$\frac{{{x}_{0}}^{2}}{p}$-y0-y0=λ($\frac{{{x}_{0}}^{2}}{2p}$-y0),∴λ=2.
故答案为2.
点评 本题以抛物线为载体,考查抛物线的标准方程,考查利用导数研究曲线的切线方程,考查计算能力,有一定的综合性.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | 2π | C. | π2 | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题¬p是真命题 | |
| B. | 命题p是特称命题 | |
| C. | 命题p是全称命题 | |
| D. | 命题p既不是全称命题也不是特称命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | [4,+∞) | C. | [2$\sqrt{3}$,+∞) | D. | [4$\sqrt{3}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com