19£®ÉèÔ²${F_1}£º{x^2}+{y^2}+4x=0$µÄÔ²ÐÄΪF1£¬Ö±Ïßl¹ýµãF2£¨2£¬0£©ÇÒ²»ÓëxÖá¡¢yÖá´¹Ö±£¬ÇÒÓëÔ²F1ÓÚC£¬DÁ½µã£¬¹ýF2×÷F1CµÄƽÐÐÏß½»Ö±ÏßF1DÓÚµãE£¬
£¨1£©Ö¤Ã÷||EF1|-|EF2||Ϊ¶¨Öµ£¬²¢Ð´³öµãEµÄ¹ì¼£·½³Ì£»
£¨2£©ÉèµãEµÄ¹ì¼£ÎªÇúÏߦ££¬Ö±Ïßl½»¦£ÓÚM£¬NÁ½µã£¬¹ýF2ÇÒÓël´¹Ö±µÄÖ±ÏßÓëÔ²F1½»ÓÚP£¬QÁ½µã£¬Çó¡÷PQMÓë¡÷PQNµÄÃæ»ýÖ®ºÍµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÇóµÃÔ²F1µÄÔ²ÐĺͰ뾶£¬ÔËÓÃÆ½ÐÐÏßµÄÐÔÖʺ͵ÈÑüÈý½ÇÐεÄÐÔÖÊ£¬¿ÉµÃED=EF2£¬ÔÙÓÉË«ÇúÏߵ͍Ò壬¼´¿ÉµÃµ½ËùÇó¶¨ÖµºÍË«ÇúÏߵķ½³Ì£»
£¨2£©Éè³öl£ºx=my+2£¨m¡Ù0£©£¬lPQ£ºy=-m£¨x-2£©£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Çó³öÔ²Ðĵ½Ö±ÏßPQµÄ¾àÀ룬ÔËÓÃÏÒ³¤¹«Ê½¿ÉµÃ|PQ|£»ÔÙÓÉÖ±ÏßlµÄ·½³ÌºÍË«ÇúÏߵķ½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿ÉµÃ|MN|£¬ÔÙÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½¿ÉµÃ¡÷PQMÓë¡÷PQNµÄÃæ»ýÖ®ºÍΪ$\frac{1}{2}$|MN|•|PQ|£¬»¯¼òÕûÀí£¬½áºÏ²»µÈʽµÄÐÔÖÊ£¬¼´¿ÉµÃµ½ËùÇó·¶Î§£®

½â´ð ½â£º£¨1£©Ö¤Ã÷£ºÔ²${F_1}£º{£¨{x+2}£©^2}+{y^2}=4$£¬Ô²ÐÄF1£¨-2£¬0£©£¬°ë¾¶r=2£¬ÈçͼËùʾ£®

ÒòΪF1C¡ÎEF2£¬ËùÒÔ¡ÏF1CD=¡ÏEF2D£®
ÓÖÒòΪF1D=F1C£¬ËùÒÔ¡ÏF1CD=¡ÏF1DC£¬
ËùÒÔ¡ÏEF2D=¡ÏF1DC£¬
ÓÖÒòΪ¡ÏF1DC=¡ÏEDF2£¬ËùÒÔ¡ÏEF2D=¡ÏEDF2£¬
¹ÊED=EF2£¬¿ÉµÃ||EF1|-|EF2||=||EF1|-|ED||=|F1D|=2£¼|F1F2|£¬
¸ù¾ÝË«ÇúÏߵ͍Ò壬¿ÉÖªµãEµÄ¹ì¼£ÊÇÒÔF1£¬F2Ϊ½¹µãµÄË«ÇúÏߣ¨¶¥µã³ýÍ⣩£¬
ÇÒa=1£¬c=2£¬b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3}$£¬
¹ÊµãEµÄ¹ì¼£·½³ÌΪ${x^2}-\frac{y^2}{3}=1£¨{y¡Ù0}£©$£®
£¨2£©$¦££º{x^2}-\frac{y^2}{3}=1£¨{y¡Ù0}£©$£®
ÒÀÌâÒâ¿ÉÉèl£ºx=my+2£¨m¡Ù0£©£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉÓÚPQ¡Íl£¬ÉèlPQ£ºy=-m£¨x-2£©£®
Ô²ÐÄF1£¨-2£¬0£©µ½Ö±ÏßPQµÄ¾àÀë$d=\frac{{|{-m£¨{-2-2}£©}|}}{{\sqrt{1+{m^2}}}}=\frac{{|{4m}|}}{{\sqrt{1+{m^2}}}}$£¬
ËùÒÔ$|{PQ}|=2\sqrt{{r^2}-{d^2}}=\frac{{4\sqrt{1-3{m^2}}}}{{\sqrt{1+{m^2}}}}$£¬
ÓÖÒòΪd£¼2£¬½âµÃ$0£¼{m^2}£¼\frac{1}{3}$£®
ÁªÁ¢Ö±ÏßlÓëË«ÇúÏߦ£µÄ·½³Ì$\left\{{\begin{array}{l}{{x^2}-\frac{y^2}{3}=1}\\{x=my+2}\end{array}}\right.$£¬ÏûÈ¥xµÃ£¨3m2-1£©y2+12my+9=0£¬
Ôò${y_1}+{y_2}=-\frac{12m}{{3{m^2}-1}}£¬{y_1}{y_2}=\frac{9}{{3{m^2}-1}}$£¬
ËùÒÔ$|{MN}|=\sqrt{1+{m^2}}|{{y_2}-{y_1}}|=\sqrt{1+{m^2}}\sqrt{{{£¨{{y_1}+{y_2}}£©}^2}-4{y_1}{y_2}}=\frac{{6£¨{{m^2}+1}£©}}{{1-3{m^2}}}$£¬
¼Ç¡÷PQM£¬¡÷PQNµÄÃæ»ý·Ö±ðΪS1£¬S2£¬
Ôò${S_1}+{S_2}=\frac{1}{2}|{MN}|•|{PQ}|=\frac{{12\sqrt{{m^2}+1}}}{{\sqrt{1-3{m^2}}}}=12\sqrt{\frac{1}{{-3+\frac{4}{{{m^2}+1}}}}}$£¬
ÓÖÒòΪ$0£¼{m^2}£¼\frac{1}{3}$£¬ËùÒÔS1+S2¡Ê£¨12£¬+¡Þ£©£¬
ËùÒÔS1+S2µÄȡֵ·¶Î§Îª£¨12£¬+¡Þ£©£®

µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃË«ÇúÏߵ͍Ò壬¿¼²éÖ±ÏߺÍÔ²¡¢Ö±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬×¢ÒâÁªÁ¢·½³Ì×飬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿¼²éÈý½ÇÐÎÃæ»ýµÄÇ󷨣¬ÒÔ¼°»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖª$\overrightarrow{{e}_{1}}$£¬$\overrightarrow{{e}_{2}}$ÊÇ»¥Ïà´¹Ö±µÄÁ½¸öµ¥Î»ÏòÁ¿£¬$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$£¬$\overrightarrow{b}$=4$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$£¬Ôò£¨¡¡¡¡£©
A£®$\overrightarrow{a}$¡Î$\overrightarrow{b}$B£®$\overrightarrow{a}$¡Í$\overrightarrow{b}$C£®|$\overrightarrow{a}$|=2|$\overrightarrow{b}$||D£®£¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾=60¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖª{an}ÊǵȱÈÊýÁУ¬an£¾0£¬a3=12£¬ÇÒa2£¬a4£¬a2+36³ÉµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éè{bn}ÊǵȲîÊýÁУ¬ÇÒb3=a3£¬b9=a5£¬Çób3+b5+b7+¡­+b2n+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªµãPÊÇÖ±Ïßx-y-2=0Éϵ͝µã£¬¹ýµãP×÷Å×ÎïÏßC£ºx2=2py£¨0£¼p£¼4£©µÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA¡¢B£¬Ïß¶ÎABµÄÖеãΪM£¬Á¬½ÓPM£¬½»Å×ÎïÏßCÓÚµãN£¬Èô$\overrightarrow{PM}$=¦Ë$\overrightarrow{PN}$£¬Ôò¦Ë=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Éè$a=\int_0^¦Ð{£¨{sinx+cosx}£©dx}$£¬ÇÒ${£¨{{x^2}-\frac{1}{ax}}£©^n}$µÄÕ¹¿ªÊ½ÖÐÖ»ÓеÚ4ÏîµÄ¶þÏîʽϵÊý×î´ó£¬ÄÇôչ¿ªÊ½ÖеÄËùÓÐÏîµÄϵÊýÖ®ºÍÊÇ£¨¡¡¡¡£©
A£®1B£®$\frac{1}{256}$C£®64D£®$\frac{1}{64}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÔÚ¡÷ABCÖУ¬$A=\frac{¦Ð}{3}£¬AB=2$£¬ÆäÃæ»ýµÈÓÚ$\frac{{\sqrt{3}}}{2}$£¬ÔòBCµÈÓÚ£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®$\sqrt{7}$C£®3D£®7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êý$f£¨x£©=sin£¨{2x+\frac{¦Ð}{6}}£©+2{cos^2}x$£®
£¨1£©×÷³öº¯Êýy=f£¨x£©ÔÚÒ»¸öÖÜÆÚÄÚµÄͼÏ󣬲¢Ð´³öÆäµ¥µ÷µÝ¼õÇø¼ä£»
£¨2£©µ±$x¡Ê[{0£¬\frac{¦Ð}{2}}]$ʱ£¬Çóf£¨x£©µÄ×î´óÖµÓë×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¡÷ABCÖУ¬DΪBC±ßÉÏÒ»µã£¬¡ÏBAD=¡ÏCAD£¬|$\overrightarrow{AB}$|=3£¬|$\overrightarrow{AC}$|=2£¬¡ÏBAC=$\frac{¦Ð}{3}$£¬Ôò$\overrightarrow{AD}•\overrightarrow{BC}$=£¨¡¡¡¡£©
A£®$-\frac{8}{5}$B£®$\frac{9}{5}$C£®$-\frac{9}{5}$D£®$\frac{8}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔÚ¹«²î´óÓÚ0µÄµÈ²îÊýÁÐ{an}ÖУ¬2a7-a13=1£¬ÇÒa1£¬a3-1£¬a6+5³ÉµÈ±ÈÊýÁУ¬ÔòÊýÁÐ{£¨-1£©n-1an}µÄǰ21ÏîºÍΪ£¨¡¡¡¡£©
A£®21B£®-21C£®441D£®-441

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸