·ÖÎö £¨1£©ÇóµÃÔ²F1µÄÔ²ÐĺͰ뾶£¬ÔËÓÃÆ½ÐÐÏßµÄÐÔÖʺ͵ÈÑüÈý½ÇÐεÄÐÔÖÊ£¬¿ÉµÃED=EF2£¬ÔÙÓÉË«ÇúÏߵ͍Ò壬¼´¿ÉµÃµ½ËùÇó¶¨ÖµºÍË«ÇúÏߵķ½³Ì£»
£¨2£©Éè³öl£ºx=my+2£¨m¡Ù0£©£¬lPQ£ºy=-m£¨x-2£©£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬Çó³öÔ²Ðĵ½Ö±ÏßPQµÄ¾àÀ룬ÔËÓÃÏÒ³¤¹«Ê½¿ÉµÃ|PQ|£»ÔÙÓÉÖ±ÏßlµÄ·½³ÌºÍË«ÇúÏߵķ½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿ÉµÃ|MN|£¬ÔÙÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½¿ÉµÃ¡÷PQMÓë¡÷PQNµÄÃæ»ýÖ®ºÍΪ$\frac{1}{2}$|MN|•|PQ|£¬»¯¼òÕûÀí£¬½áºÏ²»µÈʽµÄÐÔÖÊ£¬¼´¿ÉµÃµ½ËùÇó·¶Î§£®
½â´ð ½â£º£¨1£©Ö¤Ã÷£ºÔ²${F_1}£º{£¨{x+2}£©^2}+{y^2}=4$£¬Ô²ÐÄF1£¨-2£¬0£©£¬°ë¾¶r=2£¬ÈçͼËùʾ£®![]()
ÒòΪF1C¡ÎEF2£¬ËùÒÔ¡ÏF1CD=¡ÏEF2D£®
ÓÖÒòΪF1D=F1C£¬ËùÒÔ¡ÏF1CD=¡ÏF1DC£¬
ËùÒÔ¡ÏEF2D=¡ÏF1DC£¬
ÓÖÒòΪ¡ÏF1DC=¡ÏEDF2£¬ËùÒÔ¡ÏEF2D=¡ÏEDF2£¬
¹ÊED=EF2£¬¿ÉµÃ||EF1|-|EF2||=||EF1|-|ED||=|F1D|=2£¼|F1F2|£¬
¸ù¾ÝË«ÇúÏߵ͍Ò壬¿ÉÖªµãEµÄ¹ì¼£ÊÇÒÔF1£¬F2Ϊ½¹µãµÄË«ÇúÏߣ¨¶¥µã³ýÍ⣩£¬
ÇÒa=1£¬c=2£¬b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3}$£¬
¹ÊµãEµÄ¹ì¼£·½³ÌΪ${x^2}-\frac{y^2}{3}=1£¨{y¡Ù0}£©$£®
£¨2£©$¦££º{x^2}-\frac{y^2}{3}=1£¨{y¡Ù0}£©$£®
ÒÀÌâÒâ¿ÉÉèl£ºx=my+2£¨m¡Ù0£©£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉÓÚPQ¡Íl£¬ÉèlPQ£ºy=-m£¨x-2£©£®
Ô²ÐÄF1£¨-2£¬0£©µ½Ö±ÏßPQµÄ¾àÀë$d=\frac{{|{-m£¨{-2-2}£©}|}}{{\sqrt{1+{m^2}}}}=\frac{{|{4m}|}}{{\sqrt{1+{m^2}}}}$£¬
ËùÒÔ$|{PQ}|=2\sqrt{{r^2}-{d^2}}=\frac{{4\sqrt{1-3{m^2}}}}{{\sqrt{1+{m^2}}}}$£¬
ÓÖÒòΪd£¼2£¬½âµÃ$0£¼{m^2}£¼\frac{1}{3}$£®
ÁªÁ¢Ö±ÏßlÓëË«ÇúÏߦ£µÄ·½³Ì$\left\{{\begin{array}{l}{{x^2}-\frac{y^2}{3}=1}\\{x=my+2}\end{array}}\right.$£¬ÏûÈ¥xµÃ£¨3m2-1£©y2+12my+9=0£¬
Ôò${y_1}+{y_2}=-\frac{12m}{{3{m^2}-1}}£¬{y_1}{y_2}=\frac{9}{{3{m^2}-1}}$£¬
ËùÒÔ$|{MN}|=\sqrt{1+{m^2}}|{{y_2}-{y_1}}|=\sqrt{1+{m^2}}\sqrt{{{£¨{{y_1}+{y_2}}£©}^2}-4{y_1}{y_2}}=\frac{{6£¨{{m^2}+1}£©}}{{1-3{m^2}}}$£¬
¼Ç¡÷PQM£¬¡÷PQNµÄÃæ»ý·Ö±ðΪS1£¬S2£¬
Ôò${S_1}+{S_2}=\frac{1}{2}|{MN}|•|{PQ}|=\frac{{12\sqrt{{m^2}+1}}}{{\sqrt{1-3{m^2}}}}=12\sqrt{\frac{1}{{-3+\frac{4}{{{m^2}+1}}}}}$£¬
ÓÖÒòΪ$0£¼{m^2}£¼\frac{1}{3}$£¬ËùÒÔS1+S2¡Ê£¨12£¬+¡Þ£©£¬
ËùÒÔS1+S2µÄȡֵ·¶Î§Îª£¨12£¬+¡Þ£©£®
µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃË«ÇúÏߵ͍Ò壬¿¼²éÖ±ÏߺÍÔ²¡¢Ö±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬×¢ÒâÁªÁ¢·½³Ì×飬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿¼²éÈý½ÇÐÎÃæ»ýµÄÇ󷨣¬ÒÔ¼°»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\overrightarrow{a}$¡Î$\overrightarrow{b}$ | B£® | $\overrightarrow{a}$¡Í$\overrightarrow{b}$ | C£® | |$\overrightarrow{a}$|=2|$\overrightarrow{b}$|| | D£® | £¼$\overrightarrow{a}$£¬$\overrightarrow{b}$£¾=60¡ã |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | $\frac{1}{256}$ | C£® | 64 | D£® | $\frac{1}{64}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{3}$ | B£® | $\sqrt{7}$ | C£® | 3 | D£® | 7 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $-\frac{8}{5}$ | B£® | $\frac{9}{5}$ | C£® | $-\frac{9}{5}$ | D£® | $\frac{8}{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 21 | B£® | -21 | C£® | 441 | D£® | -441 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com