| A. | $\sqrt{3}$ | B. | $\sqrt{7}$ | C. | 3 | D. | 7 |
分析 由已知利用三角形面积公式可求AC的值,进而利用余弦定理即可计算得解.
解答 解:∵$A=\frac{π}{3},AB=2$,面积S等于$\frac{{\sqrt{3}}}{2}$=$\frac{1}{2}$AB•AC•sinA=$\frac{1}{2}×2×AC×\frac{\sqrt{3}}{2}$,
∴AC=1,
∴BC=$\sqrt{A{B}^{2}+A{C}^{2}-2AB•AC•cosA}$=$\sqrt{4+1-2×2×1×\frac{1}{2}}$=$\sqrt{3}$.
故选:A.
点评 本题主要考查了三角形面积公式,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com