精英家教网 > 高中数学 > 题目详情
9.已知|$\overrightarrow{a}$|=2,$\overrightarrow{b}$是单位向量,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为60°,则$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)等于3.

分析 依题意,利用平面向量的数量积即可求得$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)的值.

解答 解:∵|$\overrightarrow{a}$|=2,$\overrightarrow{b}$是单位向量,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为60°,
∴$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}$•$\overrightarrow{b}$=4-2×1×$\frac{1}{2}$=3,
故答案为:3.

点评 本题考查平面向量数量积的运算,掌握平面向量的数量积的运算性质及定义是解决问题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某服装销售公司进行关于消费档次的调查,根据每人月均服装消费额将消费档次分为0-500元;500-1000元;1000-1500元;1500-2000元四个档次,针对A,B两类人群各抽取100人的样本进行统计分析,各档次人数统计结果如下表所示:
档次
人群
0~
500元
500~
1000元
1000~
1500元
1500~
2000元
A类20502010
B类50301010
月均服装消费额不超过1000元的人群视为中低消费人群,超过1000元的视为中高收入人群.
(Ⅰ)从A类样本中任选一人,求此人属于中低消费人群的概率;
(Ⅱ)从A,B两类人群中各任选一人,分别记为甲、乙,估计甲的消费档次不低于乙的消费档次的概率;
(Ⅲ)以各消费档次的区间中点对应的数值为该档次的人均消费额,估计A,B两类人群哪类月均服装消费额的方差较大(直接写出结果,不必说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-5|-|x-2|.
(1)若?x∈R,使得f(x)≤m成立,求m的范围;
(2)求不等式x2-8x+15+f(x)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图1所示,在等腰梯形ABCD中,$BE⊥AD,BC=3,AD=15,BE=3\sqrt{3}$.把△ABE沿BE折起,使得$AC=6\sqrt{2}$,得到四棱锥A-BCDE.如图2所示.

(1)求证:面ACE⊥面ABD;
(2)求平面ABE与平面ACD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,$A=\frac{π}{3},AB=2$,其面积等于$\frac{{\sqrt{3}}}{2}$,则BC等于(  )
A.$\sqrt{3}$B.$\sqrt{7}$C.3D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知F为抛物线C:x2=2py(p>0)的焦点,过F的直线l与C交于A,B两点,M为AB中点,点M到x轴的距离为d,|AB|=2d+1.
(1)求p的值;
(2)过A,B分别作C的两条切线l1,l2,l1∩l2=N.请选择x,y轴中的一条,比较M,N到该轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若y=sin($\frac{π}{2}$+x),则y′=-sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=ex(-x2+2x+a)在区间[a,a+1]上单调递增,则实数a的最大值为$\frac{-1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a+i=(1+2i)•ti(i为虚数单位,a,t∈R),则t+a等于(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案