精英家教网 > 高中数学 > 题目详情
11.已知函数$f(x)=sin({2x+\frac{π}{6}})+2{cos^2}x$.
(1)作出函数y=f(x)在一个周期内的图象,并写出其单调递减区间;
(2)当$x∈[{0,\frac{π}{2}}]$时,求f(x)的最大值与最小值.

分析 (1)利用三角恒等变换化简函数f(x)为正弦型函数,按五个关键点列表,描点并用光滑的曲线连接成图,由图写出f(x)的单调递减区间;
(2)由(1)中所作的函数图象,求出f(x)在$x∈[{0,\frac{π}{2}}]$时的最值.

解答 解:(1)因为函数$f(x)=sin({2x+\frac{π}{6}})+2{cos^2}x$
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x+cos2x+1
=$\sqrt{3}({\frac{1}{2}sin2x+\frac{{\sqrt{3}}}{2}cos2x})+1$
=$\sqrt{3}({sin2xcos\frac{π}{3}+cos2xsin\frac{π}{3}})+1$
=$\sqrt{3}sin({2x+\frac{π}{3}})+1$,
所以$f(x)=\sqrt{3}sin({2x+\frac{π}{3}})+1$,
按五个关键点列表,得

$2x+\frac{π}{3}$0$\frac{π}{2}$π$\frac{3π}{2}$
x$-\frac{π}{6}$$\frac{π}{12}$$\frac{π}{3}$$\frac{7π}{12}$$\frac{5π}{6}$
y1$1+\sqrt{3}$1$1-\sqrt{3}$1
描点并用光滑的曲线连接起来,得如下图:

由图可知f(x)的单调递减区间为$[{kπ+\frac{π}{12},kπ+\frac{7π}{12}}],k∈Z$;
(2)由(1)中所作的函数图象,可知
当$x=\frac{π}{12}$时,f(x)取得最大值$\sqrt{3}+1$;
当$x=\frac{π}{2}$时,f(x)取得最小值$-\frac{1}{2}$.

点评 本题考查了三角恒等变换与五点法画图问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x+a)ln(a-x).
(Ⅰ)当a=1时,求曲线y=f(x)在x=0处的切线方程;
(Ⅱ)当a=e时,求证:函数f(x)在x=0处取得最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:实数的平方是非负数,则下列结论正确的是(  )
A.命题¬p是真命题
B.命题p是特称命题
C.命题p是全称命题
D.命题p既不是全称命题也不是特称命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设圆${F_1}:{x^2}+{y^2}+4x=0$的圆心为F1,直线l过点F2(2,0)且不与x轴、y轴垂直,且与圆F1于C,D两点,过F2作F1C的平行线交直线F1D于点E,
(1)证明||EF1|-|EF2||为定值,并写出点E的轨迹方程;
(2)设点E的轨迹为曲线Γ,直线l交Γ于M,N两点,过F2且与l垂直的直线与圆F1交于P,Q两点,求△PQM与△PQN的面积之和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若等比数列{an}的前n项和${S_n}={2^{n-1}}+a$,则a3a5=(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x+3|+|2x-4|.
(1)当x∈[-3,3]时,解关于x的不等式f(x)<6;
(2)求证:?t∈R,f(x)≥4-2t-t2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{cosB}{b}$+$\frac{cosC}{c}$=$\frac{2\sqrt{3}sinA}{3sinC}$.
(1)求b的值;
(2)若cosB+$\sqrt{3}$sinB=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{6\sqrt{5}}{5}$C.$\frac{8\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线x2=2py和$\frac{{x}^{2}}{2}$-y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0,$\frac{P}{2}$),若$\sqrt{2}$|PQ|=$\sqrt{3}$|PF|,则抛物线的方程是(  )
A.x2=4yB.x2=2$\sqrt{3}$yC.x2=6yD.x2=2$\sqrt{2}$y

查看答案和解析>>

同步练习册答案