精英家教网 > 高中数学 > 题目详情
4.椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{6\sqrt{5}}{5}$C.$\frac{8\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

分析 设右焦点为F′,连接MF′,NF′,由于|MF′|+|NF′|≥|MN|,可得当直线x=a过右焦点时,△FMN的周长最大.c=$\sqrt{5-4}$=1.把c=1代入椭圆标准方程可得:$\frac{1}{5}+\frac{{y}^{2}}{4}$=1,解得y,即可得出此时△FMN的面积S.

解答 解:设右焦点为F′,连接MF′,NF′,∵|MF′|+|NF′|≥|MN|,
∴当直线x=a过右焦点时,△FMN的周长最大.
由椭圆的定义可得:△FMN的周长的最大值=4a=4$\sqrt{5}$.
c=$\sqrt{5-4}$=1.
把c=1代入椭圆标准方程可得:$\frac{1}{5}+\frac{{y}^{2}}{4}$=1,解得y=±$\frac{4}{\sqrt{5}}$.
∴此时△FMN的面积S=$\frac{1}{2}×2×2×\frac{4}{\sqrt{5}}$=$\frac{8\sqrt{5}}{5}$.
故选:C.

点评 本题考查了椭圆的定义标准方程及其性质、三角形的三边大小关系与三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知{an}是等比数列,an>0,a3=12,且a2,a4,a2+36成等差数列.
(1)求数列{an}的通项公式;
(2)设{bn}是等差数列,且b3=a3,b9=a5,求b3+b5+b7+…+b2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=sin({2x+\frac{π}{6}})+2{cos^2}x$.
(1)作出函数y=f(x)在一个周期内的图象,并写出其单调递减区间;
(2)当$x∈[{0,\frac{π}{2}}]$时,求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC中,D为BC边上一点,∠BAD=∠CAD,|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2,∠BAC=$\frac{π}{3}$,则$\overrightarrow{AD}•\overrightarrow{BC}$=(  )
A.$-\frac{8}{5}$B.$\frac{9}{5}$C.$-\frac{9}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,AB⊥AC,AB=$\frac{1}{t}$,AC=t,P是△ABC所在平面内一点,若$\overrightarrow{AP}$=$\frac{4\overrightarrow{AB}}{|\overrightarrow{AB}|}+\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$,则△PBC面积的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若对任意的θ∈R,直线(x-2)cosθ+ysinθ+a=0与圆x2+y2-4x=0相切,则实数a的值是±2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l过椭圆C:$\frac{x^2}{2}+{y^2}=1$的左焦点F且交椭圆C于A、B两点.O为坐标原点,若OA⊥OB,则点O到直线AB的距离为(  )
A.$\frac{{\sqrt{6}}}{3}$B.2C.$\frac{{\sqrt{5}}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在公差大于0的等差数列{an}中,2a7-a13=1,且a1,a3-1,a6+5成等比数列,则数列{(-1)n-1an}的前21项和为(  )
A.21B.-21C.441D.-441

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图将边长为1的正六边形ABCDEF绕着直线l旋转180°,则旋转所形成的几何体的表面积为2$\sqrt{3}π$

查看答案和解析>>

同步练习册答案