| A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{6\sqrt{5}}{5}$ | C. | $\frac{8\sqrt{5}}{5}$ | D. | $\frac{4\sqrt{5}}{5}$ |
分析 设右焦点为F′,连接MF′,NF′,由于|MF′|+|NF′|≥|MN|,可得当直线x=a过右焦点时,△FMN的周长最大.c=$\sqrt{5-4}$=1.把c=1代入椭圆标准方程可得:$\frac{1}{5}+\frac{{y}^{2}}{4}$=1,解得y,即可得出此时△FMN的面积S.
解答
解:设右焦点为F′,连接MF′,NF′,∵|MF′|+|NF′|≥|MN|,
∴当直线x=a过右焦点时,△FMN的周长最大.
由椭圆的定义可得:△FMN的周长的最大值=4a=4$\sqrt{5}$.
c=$\sqrt{5-4}$=1.
把c=1代入椭圆标准方程可得:$\frac{1}{5}+\frac{{y}^{2}}{4}$=1,解得y=±$\frac{4}{\sqrt{5}}$.
∴此时△FMN的面积S=$\frac{1}{2}×2×2×\frac{4}{\sqrt{5}}$=$\frac{8\sqrt{5}}{5}$.
故选:C.
点评 本题考查了椭圆的定义标准方程及其性质、三角形的三边大小关系与三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{8}{5}$ | B. | $\frac{9}{5}$ | C. | $-\frac{9}{5}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{3}$ | B. | 2 | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 21 | B. | -21 | C. | 441 | D. | -441 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com