精英家教网 > 高中数学 > 题目详情
16.已知直线l过椭圆C:$\frac{x^2}{2}+{y^2}=1$的左焦点F且交椭圆C于A、B两点.O为坐标原点,若OA⊥OB,则点O到直线AB的距离为(  )
A.$\frac{{\sqrt{6}}}{3}$B.2C.$\frac{{\sqrt{5}}}{2}$D.$\frac{3}{2}$

分析 讨论直线l的斜率,联立方程组消元,利用根与系数的关系,令kOA•kOB=-1解出k,得出直线l的方程,从而求得点O到直线l的距离.

解答 解:F(-1,0),
若直线l无斜率,直线l方程为x=-1,此时A(-1,$\frac{\sqrt{2}}{2}$),B(-1,-$\frac{\sqrt{2}}{2}$),
∴kOA=-$\frac{\sqrt{2}}{2}$,kOB=$\frac{\sqrt{2}}{2}$,∴kOA•kOB=-$\frac{1}{2}$.不符合题意.
若直线l有斜率,设直线l的方程为y=k(x+1),
联立方程组$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=k(x+1)}\end{array}\right.$,消元得:(1+2k2)x2+4k2x+2k2-2=0,
设A(x1,y1),B(x2,y2),则x1x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$,x1+x2=-$\frac{4{k}^{2}}{1+2{k}^{2}}$,
∴y1y2=k2(x1+1)(x2+1)=$\frac{2{k}^{2}({k}^{2}-1)}{1+2{k}^{2}}$-$\frac{4{k}^{4}}{1+2{k}^{2}}$+k2=-$\frac{{k}^{2}}{1+2{k}^{2}}$,
∴kOA•kOB=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-$\frac{{k}^{2}}{2{k}^{2}-2}$=-1,
解得k=$±\sqrt{2}$.
∴直线l的方程为$\sqrt{2}$x-y+$\sqrt{2}$=0或$\sqrt{2}$x+y+$\sqrt{2}$=0,
∴O到直线l的距离d=$\frac{\sqrt{2}}{\sqrt{3}}$=$\frac{\sqrt{6}}{3}$.
故选A.

点评 本题考查了直线与椭圆的位置关系,利用根与系数的关系解题是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知命题p:实数的平方是非负数,则下列结论正确的是(  )
A.命题¬p是真命题
B.命题p是特称命题
C.命题p是全称命题
D.命题p既不是全称命题也不是特称命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{cosB}{b}$+$\frac{cosC}{c}$=$\frac{2\sqrt{3}sinA}{3sinC}$.
(1)求b的值;
(2)若cosB+$\sqrt{3}$sinB=2,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{6\sqrt{5}}{5}$C.$\frac{8\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\frac{{2}^{x}}{{2}^{x}+1}$+ax(a∈R),若f(ln3)=3,则f(ln$\frac{1}{3}$)=(  )
A.-2B.-3C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知随圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与过原点的直线交于A、B两点,右焦点为F,∠AFB=120°,若△AFB的面积为4$\sqrt{3}$,则椭圆E的焦距的取值范围是(  )
A.[2,+∞)B.[4,+∞)C.[2$\sqrt{3}$,+∞)D.[4$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≥0\\ 2x-y-5≤0\end{array}\right.$,若使得目标函数z=ax+y取最大值的最优解有无数个,则实数a的值是(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线x2=2py和$\frac{{x}^{2}}{2}$-y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0,$\frac{P}{2}$),若$\sqrt{2}$|PQ|=$\sqrt{3}$|PF|,则抛物线的方程是(  )
A.x2=4yB.x2=2$\sqrt{3}$yC.x2=6yD.x2=2$\sqrt{2}$y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.等差数列{an}中,a3+a4=4,a5+a7=6.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=an•5n,求{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案