分析 (Ⅰ)利用等差数列通项公式列出方程组,求出首项为a1,公差为d,由此能求出{an}的通项公式.
(Ⅱ)由${b_n}={a_n}•{5^n}=({2n+3})•{5^{n-1}}$,利用错位相减法能求出{bn}的前n项和Sn.
解答 (本小题满分12分)
解:(Ⅰ)设首项为a1,公差为d,
∵a3+a4=4,a5+a7=6.
∴依题意有$\left\{\begin{array}{l}2{a_1}+5d=4\\ 2{a_1}+10d=6\end{array}\right.$(2分)
解得${a_1}=1,d=\frac{2}{5}$.(4分)
∴${a_n}={a_1}+({n-1})d=\frac{2n+3}{5}$.(6分)
(Ⅱ)${b_n}={a_n}•{5^n}=({2n+3})•{5^{n-1}}$(7分)
${S_n}=5+7×5+9×{5^2}+…+({2n+3})•{5^{n-1}}$,
$5{S_n}=5×5+7×{5^2}+9×{5^3}+…+(2n+1)•{5^{n-1}}+({2n+3})•{5^n}$,(8分)
两式相减得$-4{S_n}=5+2×5+2×{5^2}+…+2•{5^{n-1}}-({2n+3})•{5^n}$(9分)
=$5+\frac{{2×5-2•{5^n}}}{1-5}-({2n+3})•{5^n}$(10分)
=$\frac{{5-({4n+5})•{5^n}}}{2}$(11分)
∴${S_n}=\frac{{({4n+5})•{5^n}-5}}{8}$.(12分)
点评 本题考查等差数列的通项公式、数列求和、错位相减求和法等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{3}$ | B. | 2 | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com