精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=axlnx+bx(a≠0)在(1,f(1))处的切线与x轴平行,(e=2.71828…)
(1)试讨论f(x)在(0,+∞)上的单调性;
(2)①设g(x)=x+$\frac{1}{{{e^{x-1}}}}$,x∈(0,+∞),求g(x)的最小值;
②证明:$\frac{f(x)}{a}+\frac{2}{{x{e^{x-1}}+1}}$≥1-x.

分析 (1)求出函数的导数,通过讨论a的范围求出函数的单调区间即可;
(2)①求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值即可;
②问题转化为(xlnx-1)(xex-1+1)+2≥0,即(lnx+$\frac{1}{x}$)(x+e1-x)≥2,设h(x)=lnx+$\frac{1}{x}$,根据函数的单调性证明即可.

解答 (1)解:∵f′(x)=alnx+a+b,
∴f′(1)=a+b=0,故b=-a,
∴f(x)=axlnx-ax,且f′(x)=alnx,
当a>0时,x∈(0,1)时,f′(x)<0,x∈(1,+∞)时,f′(x)>00,
∴f(x)在(0,1)递减,在(1,+∞)递增;
a<0时,x∈(0,1)时,f′(x)>0,x∈(1,+∞)时,f′(x)<0,
∴f(x)在(0,1)递增,在(1,+∞)递减;
(2)①解:∵g(x)=x+$\frac{1}{{e}^{x-1}}$,x∈(0,+∞),
∴g′(x)=1-e1-x=$\frac{{e}^{x}-e}{{e}^{x}}$,
x∈(0,1)时,g′(x)<0,x∈(1,+∞)时,g′(x)>0,
故g(x)在(0,1)递减,在(1,+∞)递增,
故g(x)min=g(1)=2;
②证明:由(1)得:f(x)=axlnx-ax,
由$\frac{f(x)}{a}+\frac{2}{{x{e^{x-1}}+1}}$≥1-x,得:xlnx-x+$\frac{2}{{xe}^{x-1}+1}$+x-1≥0,
即(xlnx-1)(xex-1+1)+2≥0
?(xlnx+1)xex-1+xlnx+1≥2xex-1
?(xlnx+1)(xex-1+1)≥2xex-1
即(lnx+$\frac{1}{x}$)(x+e1-x)≥2,
设h(x)=lnx+$\frac{1}{x}$,h′(x)=$\frac{x-1}{{x}^{2}}$,
故h(x)在(0,1)递减,在(1,+∞)递增,
故h(x)≥h(1)=1,
又g(x)在(0,+∞)时,g(x)≥2,
故(lnx+$\frac{1}{x}$)(x+e1-x)≥2成立,
即$\frac{f(x)}{a}+\frac{2}{{x{e^{x-1}}+1}}$≥1-x成立.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知随圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与过原点的直线交于A、B两点,右焦点为F,∠AFB=120°,若△AFB的面积为4$\sqrt{3}$,则椭圆E的焦距的取值范围是(  )
A.[2,+∞)B.[4,+∞)C.[2$\sqrt{3}$,+∞)D.[4$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆C:x2+y2+2x-8y+m=0与抛物线上E:y2=8x的准线l相切,抛物线E上的点P到准线l的距离为d,Q为圆C上任意一点,则|PQ|+d的最小值等于(  )
A.3B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点分别为F1,F2,短轴的一个端点为点P,△PF1F2内切圆的半径为$\frac{b}{3}$.设过点F2的直线l被椭圆C截得的线段为RS,当l⊥x轴时,|RS|=3
(1)求椭圆C的标准方程;
(2)在x轴上是否存在一点T,使得当l变化时,总有TS与TR所在直线关于x轴对称?若存在,请求出点T的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.等差数列{an}中,a3+a4=4,a5+a7=6.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=an•5n,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.等差数列{an}中,a1=2,公差为d≠0,Sn其前n项的和,且S2n=4Sn(n∈N+)恒成立.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{4}{{\sqrt{a_n}+\sqrt{{a_{n+1}}}}}$(n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某市为了了解全民健身运动开展的效果,选择甲、乙两个相似的小区作对比,一年前在甲小区利用体育彩票基金建设了健身广场,一年后分别在两小区采用简单随机抽样的方法抽取20人作为样本,进行身体综合素质测试,测试得分分数的茎叶图(其中十位为茎,个们为叶)如图:
(1)求甲小区和乙小区的中位数;
(2)身体综合素质测试成绩在60分以上(含60)的人称为“身体综合素质良好”,否则称为“身体综合素质一般”.以样本中的频率作为概率,两小区人口都按1000人计算,填写下列2×2列联表,
甲小区(有健康广场)乙小区(无健康广场)合计
身体综合素质良好350300650
身体综合素质一般6507001350
合计100010002000
并判断是否有97.5%把握认为“身体综合素质良好”与“小区是否建设健身广场”有关?
P(K2>k)0.100.050.0250.010.005
k01.7063.8415.0246.6357.879
(附:k=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|0<x<2},集合B={x|-1<x<1},则A∪B等于(  )
A.{x|0<x<1}B.{x|-1<x<2}C.{x|0<x<2}D.{x|-1<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.6名同学合影留念,站成两排三列,则其中甲乙两人不在同一排也不在同一列的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{4}{9}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案