精英家教网 > 高中数学 > 题目详情
16.等差数列{an}中,a1=2,公差为d≠0,Sn其前n项的和,且S2n=4Sn(n∈N+)恒成立.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{4}{{\sqrt{a_n}+\sqrt{{a_{n+1}}}}}$(n∈N+),求数列{bn}的前n项和Tn

分析 (1)根据数列的递推公式可得S2=4S1,继而求出公差d,再写出通项公式即可,
(2)化简bn=$\sqrt{4n+2}$-$\sqrt{4n-2}$,累加求和即可

解答 解:(1)S2n=4Sn(n∈N+)恒成立,
∴S2=4S1
∴2a1+d=4a1
∴d=2a1=4,
∴an=a1+(n-1)d=4n-2,(n∈N+
(2)∵bn=$\frac{4}{{\sqrt{a_n}+\sqrt{{a_{n+1}}}}}$=$\frac{4}{\sqrt{4n-2}+\sqrt{4n+2}}$=$\sqrt{4n+2}$-$\sqrt{4n-2}$,
∴数列{bn}的前n项和Tn=$\sqrt{6}$-$\sqrt{2}$+$\sqrt{10}$-$\sqrt{6}$+$\sqrt{14}$-$\sqrt{10}$+$\sqrt{4n+2}$-$\sqrt{4n-2}$=$\sqrt{4n+2}$-$\sqrt{2}$

点评 本题考查了数列的递推公式和累加法,考查了学生的运算能力和转化能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某羽绒服卖场为了解气温对营业额的影响,营业员小孙随机记录了该店3月份上旬中某5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:
x258911
y1210887
(1)求y关于x的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若天气预报明天的最低气温为12℃,用所求回归方程预测该店明天的营业额;
(3)设该地3月份的日最低气温X~N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差,求P(0.6<X<10.2).
附:(1)回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{n}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
22+52+82+92+112=295,2×12+5×10+8×8+9×8+11×7=287.
(2)$\sqrt{10}$=3.2;若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6827.P(μ-2σ<X<μ+2σ)=0.9545.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z满足$\frac{1+i}{1-i}$•z=3+4i,则z的共轭复数为(  )
A.4+3iB.-4+3iC.-4-3iD.4-3i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.甲乙两人做报数游戏,其规则是:从1开始两人轮流连续报数,每人每次最少报1个数,最多可以连续报6个(如,第一个人先报“1,2”,则另一个人可以有“3”,“3,4”,…“3,4,5,6,7,8”等六种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是1,2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=axlnx+bx(a≠0)在(1,f(1))处的切线与x轴平行,(e=2.71828…)
(1)试讨论f(x)在(0,+∞)上的单调性;
(2)①设g(x)=x+$\frac{1}{{{e^{x-1}}}}$,x∈(0,+∞),求g(x)的最小值;
②证明:$\frac{f(x)}{a}+\frac{2}{{x{e^{x-1}}+1}}$≥1-x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=cosx($\sqrt{3}$sinx-cosx)+m(m∈R),将y=f(x)的图象向左平移$\frac{π}{6}$个单位后得到g(x)的图象,且y=g(x)在区间[$\frac{π}{4}$,$\frac{π}{3}$]内的最小值为$\frac{\sqrt{3}}{2}$.
(1)求m的值;
(2)在锐角△ABC中,若g($\frac{C}{2}$)=-$\frac{1}{2}$+$\sqrt{3}$,求sinA+cosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设A2n=(a1,a2,…,a2n)是由2n个实数组成的有序数组,满足下列条件:①ai∈{1,-1},i=1,2,…,2n;②a1+a2+…+a2n=0;③a1+a2+…+ai≥0,i=1,2,…,2n-1.
(Ⅰ)当n=3时,写出满足题设条件的全部A6
(Ⅱ)设n=2k-1,其中k∈N*,求a1+a2+…+an的取值集合;
(Ⅲ)给定正整数n,求A2n的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A={-1,0,1,2},B={1,2,3},则集合A∪B中所有元素之和是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$f(x)=\frac{{{x^2}ln|x|}}{{{2^{|x|}}}}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案