精英家教网 > 高中数学 > 题目详情
6.某羽绒服卖场为了解气温对营业额的影响,营业员小孙随机记录了该店3月份上旬中某5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:
x258911
y1210887
(1)求y关于x的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若天气预报明天的最低气温为12℃,用所求回归方程预测该店明天的营业额;
(3)设该地3月份的日最低气温X~N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差,求P(0.6<X<10.2).
附:(1)回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{n}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
22+52+82+92+112=295,2×12+5×10+8×8+9×8+11×7=287.
(2)$\sqrt{10}$=3.2;若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6827.P(μ-2σ<X<μ+2σ)=0.9545.

分析 (1)求出回归系数,即可求y关于x的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)x=12时,$\widehat{y}$=-0.56×12+12.92=6.2,即可预测该店明天的营业额;
(3)X~N(7,10),P(0.6<X<10.2)=P(0.6<X<7)+P(7<X<10.2)=

解答 解:(1)根据题意,计算$\overline x=\frac{1}{5}×(2+5+8+9+11)=7$,$\overline y=\frac{1}{5}×(12+10+8+8+7)=9$,…(2分)
$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x^2}_i-n{{\overline x}^2}}}}=\frac{287-5×7×9}{295-5×7×7}=-0.56$,…(4分)
$\hat a=\overline y-\hat b\overline x=9-(-0.56)×7=12.92$,
∴y关于x的回归直线方程$\widehat{y}$=-0.56x+12.92;   …(6分)
(2)x=12时,$\widehat{y}$=-0.56×12+12.92=6.2,
预测该店明天的营业额为6200元;    …(8分)
(3)由题意,平均数为μ=7,方差为σ2=10,
所以X~N(7,10),…(10分)
所以P(0.6<X<10.2)=P(0.6<X<7)+P(7<X<10.2)=$\frac{1}{2}×0.9545+\frac{1}{2}×0.6827=0.8186$. …(12分)

点评 本题考查了回归直线方程和正态分布的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设Sn为正项等比数列{an}的前n项和,若a4•a8=2a10,则S3的最小值为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F为抛物线C:y2=2px(p>0)的焦点,曲线y=$\frac{k}{x}$(k>0)与C交于点A,直线FA恰与曲线y=$\frac{k}{x}$(k>0)相切于点A,FA交C的准线于点B,则$\frac{|FA|}{|BA|}$等于(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知定义在(-$\frac{π}{2}$,$\frac{π}{2}$)上的函数f(x)是奇函数,且当x∈(0,$\frac{π}{2}$)时,f(x)=$\frac{tanx}{tanx+1}$.
(1)求f(x)在区间(-$\frac{π}{2}$,$\frac{π}{2}$)上的解析式;
(2)当实数m为何值时,关于x的方程f(x)=m在(-$\frac{π}{2}$,$\frac{π}{2}$)有解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知随圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与过原点的直线交于A、B两点,右焦点为F,∠AFB=120°,若△AFB的面积为4$\sqrt{3}$,则椭圆E的焦距的取值范围是(  )
A.[2,+∞)B.[4,+∞)C.[2$\sqrt{3}$,+∞)D.[4$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在${({\sqrt{x}-\frac{1}{x}+1})^7}$的展开式中,x2的系数为28.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在一次水稻试验田验收活动中,将甲、乙两种水稻随机抽取各6株样品,单株籽粒数制成如图所示的茎叶图:
(1)一粒水稻约为0.1克,每亩水稻约为6万株,估计甲种水稻亩产约为多少公斤?
(2)分别从甲、乙两种水稻样品中任取一株,甲品种中选出的籽粒数记为a,乙品种中选出的籽粒数记为b,求a∈[180,189]且b∈[180,189]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ2(3+sin2θ)=12,曲线C2的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t为参数),$α∈({0,\frac{π}{2}})$.
(1)求曲线C1的直角坐标方程,并判断该曲线是什么曲线;
(2)设曲线C2与曲线C1的交点为A,B,当$|{PA}|+|{PB}|=\frac{7}{2}$时,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.等差数列{an}中,a1=2,公差为d≠0,Sn其前n项的和,且S2n=4Sn(n∈N+)恒成立.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{4}{{\sqrt{a_n}+\sqrt{{a_{n+1}}}}}$(n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案