精英家教网 > 高中数学 > 题目详情
11.在${({\sqrt{x}-\frac{1}{x}+1})^7}$的展开式中,x2的系数为28.

分析 ${({\sqrt{x}-\frac{1}{x}+1})^7}$的展开式的通项公式:Tr+1=${∁}_{7}^{r}$$(\sqrt{x}-\frac{1}{x})^{r}$.$(\sqrt{x}-\frac{1}{x})^{r}$的通项公式为:Tk+1=(-1)k${∁}_{r}^{k}$${x}^{\frac{r-3k}{2}}$.令$\frac{r-3k}{2}$=2,即r-3k=4,讨论解出即可得出.

解答 解:${({\sqrt{x}-\frac{1}{x}+1})^7}$的展开式的通项公式:Tr+1=${∁}_{7}^{r}$$(\sqrt{x}-\frac{1}{x})^{r}$.
$(\sqrt{x}-\frac{1}{x})^{r}$的通项公式为:Tk+1=${∁}_{r}^{k}$$(\sqrt{x})^{r-k}(-\frac{1}{x})^{k}$=(-1)k${∁}_{r}^{k}$${x}^{\frac{r-3k}{2}}$.
令$\frac{r-3k}{2}$=2,即r-3k=4,可得:k=0,r=4;k=1,r=7.
∴x2的系数=${∁}_{4}^{0}$$•{∁}_{7}^{4}$-${∁}_{7}^{1}$${∁}_{7}^{7}$=28.
故答案为:28.

点评 本题考查了二项式定理的通项公式及其性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图1所示,在等腰梯形ABCD中,$BE⊥AD,BC=3,AD=15,BE=3\sqrt{3}$.把△ABE沿BE折起,使得$AC=6\sqrt{2}$,得到四棱锥A-BCDE.如图2所示.

(1)求证:面ACE⊥面ABD;
(2)求平面ABE与平面ACD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=ex(-x2+2x+a)在区间[a,a+1]上单调递增,则实数a的最大值为$\frac{-1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x2+x)lnx+2x3+(1-a)x2-(a+1)x+b(a,b∈R).
(Ⅰ)当a=3时,若函数f(x)存在零点,求实数b的取值范围;
(Ⅱ)若f(x)≥0恒成立,求b-2a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某羽绒服卖场为了解气温对营业额的影响,营业员小孙随机记录了该店3月份上旬中某5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:
x258911
y1210887
(1)求y关于x的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若天气预报明天的最低气温为12℃,用所求回归方程预测该店明天的营业额;
(3)设该地3月份的日最低气温X~N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差,求P(0.6<X<10.2).
附:(1)回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{n}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
22+52+82+92+112=295,2×12+5×10+8×8+9×8+11×7=287.
(2)$\sqrt{10}$=3.2;若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6827.P(μ-2σ<X<μ+2σ)=0.9545.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\left\{\begin{array}{l}{e^x},x≤0\\{x^2}-2x+a+1,x>0\end{array}$,若函数g(x)=f(x)-ax-1有4个零点,则实数a的取值范围为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a+i=(1+2i)•ti(i为虚数单位,a,t∈R),则t+a等于(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.2016年11月,第十一届中国(珠海)国际航空航天博览会开幕式当天,歼-20的首次亮相给观众留下了极深的印象.某参赛国展示了最新研制的两种型号的无人机,先从参观人员中随机抽取100人对这两种型号的无人机进行评价,评价分为三个等级:优秀、良好、合格.由统计信息可知,甲型号无人机被评为优秀的频率为$\frac{3}{5}$、良好的频率为$\frac{2}{5}$;乙型号无人机被评为优秀的频率为$\frac{7}{10}$,且被评为良好的频率是合格的频率的5倍.
(1)求这100人中对乙型号无人机评为优秀和良好的人数;
(2)如果从这100人中按对甲型号无人机的评价等级用分层抽样的方法抽取5人,然后从其他对乙型号无人机评优秀、良好的人员中各选取1人进行座谈会,会后从这7人中随机抽取2人进行现场操作体验活动,求进行现场操作体验活动的2人都评优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=cosx($\sqrt{3}$sinx-cosx)+m(m∈R),将y=f(x)的图象向左平移$\frac{π}{6}$个单位后得到g(x)的图象,且y=g(x)在区间[$\frac{π}{4}$,$\frac{π}{3}$]内的最小值为$\frac{\sqrt{3}}{2}$.
(1)求m的值;
(2)在锐角△ABC中,若g($\frac{C}{2}$)=-$\frac{1}{2}$+$\sqrt{3}$,求sinA+cosB的取值范围.

查看答案和解析>>

同步练习册答案