精英家教网 > 高中数学 > 题目详情
14.已知定义在(-$\frac{π}{2}$,$\frac{π}{2}$)上的函数f(x)是奇函数,且当x∈(0,$\frac{π}{2}$)时,f(x)=$\frac{tanx}{tanx+1}$.
(1)求f(x)在区间(-$\frac{π}{2}$,$\frac{π}{2}$)上的解析式;
(2)当实数m为何值时,关于x的方程f(x)=m在(-$\frac{π}{2}$,$\frac{π}{2}$)有解.

分析 (1)利用奇函数的定义,结合x∈(0,$\frac{π}{2}$)时,f(x)=$\frac{tanx}{tanx+1}$,求f(x)在区间(-$\frac{π}{2}$,$\frac{π}{2}$)上的解析式;
(2)分类讨论,利用函数的解析式,可得结论.

解答 解:(1)设$-\frac{π}{2}<x<0$,则$0<-x<\frac{π}{2}$,
∵f(x)是奇函数,则有$f(x)=-f(-x)=-\frac{tan(-x)}{tan(-x)+1}=\frac{tanx}{1-tanx}$…(4分)
∴f(x)=$\left\{\begin{array}{l}{\frac{tanx}{tanx+1},0<x<\frac{π}{2}}\\{0,x=0}\\{\frac{tanx}{1-tanx},-\frac{π}{2}<x<0}\end{array}\right.$…(7分)
(2)设$0<x<\frac{π}{2}$,令t=tanx,则t>0,而$y=f(x)=\frac{tanx}{tanx+1}=\frac{t}{t+1}=1-\frac{1}{1+t}$.
∵1+t>1,得$0<\frac{1}{1+t}<1$,从而$0<1-\frac{1}{1+t}<1$,
∴y=f(x)在$0<x<\frac{π}{2}$的取值范围是0<y<1.…(11分)
又设$-\frac{π}{2}<x<0$,则$0<-x<\frac{π}{2}$,
由此函数是奇函数得f(x)=-f(-x),0<f(-x)<1,从而-1<f(x)<0.…(13分)
综上所述,y=f(x)的值域为(-1,1),所以m的取值范围是(-1,1).…(14分)

点评 本题考查奇函数的定义,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-5|-|x-2|.
(1)若?x∈R,使得f(x)≤m成立,求m的范围;
(2)求不等式x2-8x+15+f(x)≤0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若y=sin($\frac{π}{2}$+x),则y′=-sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=ex(-x2+2x+a)在区间[a,a+1]上单调递增,则实数a的最大值为$\frac{-1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若对任意的θ∈R,直线(x-2)cosθ+ysinθ+a=0与圆x2+y2-4x=0相切,则实数a的值是±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x2+x)lnx+2x3+(1-a)x2-(a+1)x+b(a,b∈R).
(Ⅰ)当a=3时,若函数f(x)存在零点,求实数b的取值范围;
(Ⅱ)若f(x)≥0恒成立,求b-2a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某羽绒服卖场为了解气温对营业额的影响,营业员小孙随机记录了该店3月份上旬中某5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:
x258911
y1210887
(1)求y关于x的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若天气预报明天的最低气温为12℃,用所求回归方程预测该店明天的营业额;
(3)设该地3月份的日最低气温X~N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差,求P(0.6<X<10.2).
附:(1)回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{n}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
22+52+82+92+112=295,2×12+5×10+8×8+9×8+11×7=287.
(2)$\sqrt{10}$=3.2;若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.6827.P(μ-2σ<X<μ+2σ)=0.9545.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a+i=(1+2i)•ti(i为虚数单位,a,t∈R),则t+a等于(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.甲乙两人做报数游戏,其规则是:从1开始两人轮流连续报数,每人每次最少报1个数,最多可以连续报6个(如,第一个人先报“1,2”,则另一个人可以有“3”,“3,4”,…“3,4,5,6,7,8”等六种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想必胜,第一次报的数应该是1,2.

查看答案和解析>>

同步练习册答案