精英家教网 > 高中数学 > 题目详情
9.若对任意的θ∈R,直线(x-2)cosθ+ysinθ+a=0与圆x2+y2-4x=0相切,则实数a的值是±2.

分析 由已知得圆心到直线的距离d=$\frac{|a|}{\sqrt{co{s}^{2}θ+si{n}^{2}θ}}$=2,由此能求出结果.

解答 解:圆x2+y2-4x=0,可化为(x-2)2+y2=4,
∴圆心(2,0)到直线的距离d=$\frac{|a|}{\sqrt{co{s}^{2}θ+si{n}^{2}θ}}$=2,
∴a=±2,
故答案为:±2.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意圆的性质和点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x+2|+|x-1|.
(1)证明:f(x)≥f(0);
(2)若?x∈R,不等式2f(x)≥f(a+1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x+3|+|2x-4|.
(1)当x∈[-3,3]时,解关于x的不等式f(x)<6;
(2)求证:?t∈R,f(x)≥4-2t-t2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设F为抛物线C:y2=2px(p>0)的焦点,曲线y=$\frac{k}{x}$(k>0)与C交于点A,直线FA恰与曲线y=$\frac{k}{x}$(k>0)相切于点A,FA交C的准线于点B,则$\frac{|FA|}{|BA|}$等于(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{6\sqrt{5}}{5}$C.$\frac{8\sqrt{5}}{5}$D.$\frac{4\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知定义在(-$\frac{π}{2}$,$\frac{π}{2}$)上的函数f(x)是奇函数,且当x∈(0,$\frac{π}{2}$)时,f(x)=$\frac{tanx}{tanx+1}$.
(1)求f(x)在区间(-$\frac{π}{2}$,$\frac{π}{2}$)上的解析式;
(2)当实数m为何值时,关于x的方程f(x)=m在(-$\frac{π}{2}$,$\frac{π}{2}$)有解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知随圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与过原点的直线交于A、B两点,右焦点为F,∠AFB=120°,若△AFB的面积为4$\sqrt{3}$,则椭圆E的焦距的取值范围是(  )
A.[2,+∞)B.[4,+∞)C.[2$\sqrt{3}$,+∞)D.[4$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在一次水稻试验田验收活动中,将甲、乙两种水稻随机抽取各6株样品,单株籽粒数制成如图所示的茎叶图:
(1)一粒水稻约为0.1克,每亩水稻约为6万株,估计甲种水稻亩产约为多少公斤?
(2)分别从甲、乙两种水稻样品中任取一株,甲品种中选出的籽粒数记为a,乙品种中选出的籽粒数记为b,求a∈[180,189]且b∈[180,189]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点分别为F1,F2,短轴的一个端点为点P,△PF1F2内切圆的半径为$\frac{b}{3}$.设过点F2的直线l被椭圆C截得的线段为RS,当l⊥x轴时,|RS|=3
(1)求椭圆C的标准方程;
(2)在x轴上是否存在一点T,使得当l变化时,总有TS与TR所在直线关于x轴对称?若存在,请求出点T的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案