精英家教网 > 高中数学 > 题目详情
5.已知集合A={-1,0,1,2},B={1,2,3},则集合A∪B中所有元素之和是5.

分析 利用并集定义先求出A∪B,由此能求出集合A∪B中所有元素之和.

解答 解:∵集合A={-1,0,1,2},B={1,2,3},
∴A∪B={-1,0,1,1,2,3},
∴集合A∪B中所有元素之和是:-1+0+1+2+3=5.
故答案为:5.

点评 本题考查并集的求法及应用,是基础题,解题时要认真审题,注意并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ2(3+sin2θ)=12,曲线C2的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t为参数),$α∈({0,\frac{π}{2}})$.
(1)求曲线C1的直角坐标方程,并判断该曲线是什么曲线;
(2)设曲线C2与曲线C1的交点为A,B,当$|{PA}|+|{PB}|=\frac{7}{2}$时,求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.等差数列{an}中,a1=2,公差为d≠0,Sn其前n项的和,且S2n=4Sn(n∈N+)恒成立.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{4}{{\sqrt{a_n}+\sqrt{{a_{n+1}}}}}$(n∈N+),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知P是抛物线y2=4x上的动点,Q在圆C:(x+3)2+(y-3)2=1上,R是P在y轴上的射影,则|PQ|+|PR|的最小值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|0<x<2},集合B={x|-1<x<1},则A∪B等于(  )
A.{x|0<x<1}B.{x|-1<x<2}C.{x|0<x<2}D.{x|-1<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在直三棱柱ABC-A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则三棱锥A1-MBC1的体积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题中真命题的个数是(  )
①若p∧q是假命题,则p,q都是假命题;
②命题“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,x03-x02+1>0”;
③若p:x≤1,q:$\frac{1}{x}$<1,则¬p是q的充分不必要条件.
④设随机变量X服从正态分布N(3,7),若P(X>C+1)=P(X<C-1),则C=3.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+2|+|x-3|
(1)证明:f(x)≥f(0);
(2)若?x∈R,不等式3f(x)>f(a+1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在R上且周期为4的偶函数,当x∈[2,4]时,$f(x)=|{{{log}_4}({x-\frac{3}{2}})}|$,则$f({\frac{1}{2}})$的值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案