1£®ÒÑÖªÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3+5cos¦Á}\\{y=4+5sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬A£¬BÔÚÇúÏßCÉÏ£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬A£¬BÁ½µãµÄ¼«×ø±ê·Ö±ðΪA£¨¦Ñ1£¬$\frac{¦Ð}{6}$£©£¬B£¨¦Ñ2£¬$\frac{¦Ð}{2}$£©
£¨¢ñ£©ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨¢ò£©ÉèÇúÏßCµÄÖÐÐÄΪM£¬Çó¡÷MABµÄÃæ»ý£®

·ÖÎö £¨¢ñ£©ÀûÓÃÈýÖÖ·½³ÌµÄת»¯·½·¨£¬ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨¢ò£©Çó³öA£¬BµÄ×ø±ê£¬¿ÉµÃ|AB|£¬ÉèÇúÏßCµÄÖÐÐÄΪM£¬Çó³öMµ½ABµÄ¾àÀ룬¼´¿ÉÇó¡÷MABµÄÃæ»ý£®

½â´ð ½â£º£¨¢ñ£©ÓÉÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3+5cos¦Á}\\{y=4+5sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬µÃ£¨x-3£©2+£¨y-4£©2=25£¬¼´x2+y2-6x-8y=0£¬¡àÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=6cos¦È+8sin¦È£»
£¨¢ò£©A£¬BÁ½µãµÄ¼«×ø±ê·Ö±ðΪA£¨¦Ñ1£¬$\frac{¦Ð}{6}$£©£¬B£¨¦Ñ2£¬$\frac{¦Ð}{2}$£©£¬¿ÉµÃA£¨4+3$\sqrt{3}$£¬$\frac{¦Ð}{6}$£©£¬B£¨8£¬$\frac{¦Ð}{2}$£©£¬
¡à|AB|=$\sqrt{£¨4+3\sqrt{3}£©^{2}+64-2£¨4+3\sqrt{3}£©•8•\frac{1}{2}}$=5$\sqrt{3}$
ÉèÇúÏßCµÄÖÐÐÄΪM£¬Mµ½ABµÄ¾àÀëd=$\sqrt{25-£¨\frac{5\sqrt{3}}{2}£©^{2}}$=$\frac{5}{2}$£¬
¡à¡÷MABµÄÃæ»ýS=$\frac{1}{2}¡Á\frac{5}{2}¡Á5\sqrt{3}$=$\frac{25\sqrt{3}}{4}$£®

µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄת»¯£¬¿¼²éÈý½ÇÐÎÃæ»ýµÄ¼ÆË㣬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{2}^{x}}{{2}^{x}+1}$+ax£¨a¡ÊR£©£¬Èôf£¨ln3£©=3£¬Ôòf£¨ln$\frac{1}{3}$£©=£¨¡¡¡¡£©
A£®-2B£®-3C£®0D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ô²£¨x+1£©2+y2=2µÄÔ²Ðĵ½Ö±Ïßy=2x+3µÄ¾àÀëΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{5}}}{5}$B£®$\sqrt{5}$C£®$\sqrt{2}$D£®$2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¸ßÈýѧÉúСÀî¼Æ»®ÔÚ2017Äê¸ß¿¼½áÊøºó£¬ºÍÆäËûС»ï°éÒ»¿é¶ù½øÐÐÂÃÓΣ¬ÓÐ3¸ö×ÔÈ»·ç¹â¾°µãA£¬B£¬CºÍ3¸öÈËÎÄÀúÊ·¾°µãa£¬b£¬c¿É¹©Ñ¡Ôñ£¬ÓÉÓÚʱ¼äºÍ¾àÀëÔ­Òò£¬Ö»ÄÜ´ÓÖÐÈÎÈ¡4¸ö¾°µã½øÐвιۣ¬ÆäÖо°µãA²»ÄܵÚÒ»¸ö²Î¹Û£¬ÇÒ×îºó²Î¹ÛµÄÊÇÈËÎÄÀúÊ·¾°µã£¬Ôò²»Í¬µÄÂÃÓÎ˳ÐòÓУ¨¡¡¡¡£©
A£®54ÖÖB£®72ÖÖC£®120ÖÖD£®144ÖÖ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªµÈ±ÈÊýÁÐ{an}Âú×ãa2a5=2a3£¬ÇÒa4£¬$\frac{5}{4}$£¬2a7³ÉµÈ²îÊýÁУ¬Ôòa1a2a3¡­anµÄ×î´óֵΪ1024£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®µÈ²îÊýÁÐ{an}ÖУ¬a3+a4=4£¬a5+a7=6£®
£¨¢ñ£©Çó{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=an•5n£¬Çó{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÏòÁ¿$\overrightarrow a=£¨2£¬1£©£¬\overrightarrow b=£¨-1£¬2£©$£¬Ôò$£¨\overrightarrow a+\overrightarrow b£©£¨\overrightarrow a-\overrightarrow b£©$=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÈôʵÊýx£¬yÂú×ãÌõ¼þ$\left\{\begin{array}{l}y¡Ý2|x|-1\\ y¡Üx+1\end{array}\right.$£¬Ôòz=x+yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®-1B£®$-\frac{1}{2}$C£®5D£®-5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èô¹ØÓÚxµÄ²»µÈʽ|ax-2|£¼6µÄ½â¼¯Îª{x|-$\frac{4}{3}$£¼x£¼$\frac{8}{3}$}
£¨1£©ÇóaµÄÖµ£»
£¨2£©Èôb=1£¬Çó$\sqrt{-at+12}$+$\sqrt{3bt}$µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸