精英家教网 > 高中数学 > 题目详情
10.若实数x,y满足条件$\left\{\begin{array}{l}y≥2|x|-1\\ y≤x+1\end{array}\right.$,则z=x+y的最大值为(  )
A.-1B.$-\frac{1}{2}$C.5D.-5

分析 作出不等式组所表示的平面区域,由z=x+y可得y=-x+z,则z为直线y=-x+z在y轴上的截距,根据可行域判断,z取得最大值的位置,代入可求.

解答 解:作出不等式组所表示的平面区域,
如图所示的阴影部分,
由z=x+y可得y=-x+z,
则z为直线y=-x+z在y轴上的截距.
做直线l:x+y=0,然后把直线l向上平移z变大,当直线经过点A时,z最大,
此时$\left\{\begin{array}{l}{y=2x-1}\\{y=x+1}\end{array}\right.$可得A(2,3)
此时,zmax=2+3=5
故选:C

点评 本题主要考查了利用线性规划的知识求解目标函数的最大值,解题的关键是判断取得最大值时的最优解的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知等腰梯形ABCD中AB∥CD,AB=2CD=4,∠BAD=60°,双曲线以A,B为焦点,且与线段CD(包括端点C、D)有两个交点,则该双曲线的离心率的取值范围是[$\sqrt{3}$+1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=3+5cosα}\\{y=4+5sinα}\end{array}\right.$,(α为参数),A,B在曲线C上,以原点O为极点,x轴的正半轴为极轴建立极坐标系,A,B两点的极坐标分别为A(ρ1,$\frac{π}{6}$),B(ρ2,$\frac{π}{2}$)
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)设曲线C的中心为M,求△MAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=axlnx+bx(a≠0)在(1,f(1))处的切线与x轴平行,
(1)试讨论f(x)在(0,+∞)上的单调性;
(2)若存在a∈(e,+∞),对任意的${x_1},{x_2}∈[\frac{1}{3}e,3e]$都有|f(x1)-f(x2)|<(m+eln3)a+3e成立,求实数m的取值范围.(e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(1,2),若向量$\overrightarrow{a}$-λ$\overrightarrow{b}$与向量$\overrightarrow{c}$=(1,-2)垂直,则实数λ=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow a$,$\overrightarrow b$,其中$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,且$(\overrightarrow a+\overrightarrow b)⊥\overrightarrow a$,则$|\overrightarrow a-2\overrightarrow b|$=$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=ax3-xlnx,若?x1、x2∈(0,+∞)且x1≠x2,不等式(x12-x22)(f(x1)-f(x2))>0恒成立,则实数a的取值范围是$[\frac{e}{6},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在边长为2的正方形ABCD中,M是AB的中点,过C,M,D三点的抛物线与CD围成阴影部分,则向正方形内撒一粒黄豆落在阴影部分的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=2sin(2x+φ)(0<φ<$\frac{π}{2}$)的图象过点(0,$\sqrt{3}$),则函数f(x)在[0,π]上的单调减区间是[$\frac{π}{12}$,$\frac{7π}{12}$]【或($\frac{π}{12}$,$\frac{7π}{12}$)也正确】.

查看答案和解析>>

同步练习册答案