| A. | -1 | B. | $-\frac{1}{2}$ | C. | 5 | D. | -5 |
分析 作出不等式组所表示的平面区域,由z=x+y可得y=-x+z,则z为直线y=-x+z在y轴上的截距,根据可行域判断,z取得最大值的位置,代入可求.
解答
解:作出不等式组所表示的平面区域,
如图所示的阴影部分,
由z=x+y可得y=-x+z,
则z为直线y=-x+z在y轴上的截距.
做直线l:x+y=0,然后把直线l向上平移z变大,当直线经过点A时,z最大,
此时$\left\{\begin{array}{l}{y=2x-1}\\{y=x+1}\end{array}\right.$可得A(2,3)
此时,zmax=2+3=5
故选:C
点评 本题主要考查了利用线性规划的知识求解目标函数的最大值,解题的关键是判断取得最大值时的最优解的位置.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com