分析 ?x1、x2∈(0,+∞)且x1≠x2,不等式(x12-x22)(f(x1)-f(x2))>0恒成立?$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,即函数f(x)在x∈(0,+∞)上单调递增.可得f′(x)=3ax2-lnx-1≥0,在x∈(0,+∞)上恒成立.即3a≥$\frac{lnx+1}{{x}^{2}}$=g(x),利用导数研究单调性极值与最值即可得出.
解答 解:?x1、x2∈(0,+∞)且x1≠x2,不等式(x12-x22)(f(x1)-f(x2))>0恒成立,
?$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,?x1、x2∈(0,+∞)且x1≠x2,
∴函数f(x)在x∈(0,+∞)上单调递增.
∴f′(x)=3ax2-lnx-1≥0,在x∈(0,+∞)上恒成立.
即3a≥$\frac{lnx+1}{{x}^{2}}$=g(x),
g′(x)=$\frac{\frac{1}{x}•{x}^{2}-2x(lnx+1)}{{x}^{4}}$=$\frac{-(1+2lnx)}{{x}^{3}}$.
可知:x=$\frac{1}{\;}\sqrt{e}$时,g(x)极大值即最大值,g($\frac{1}{\sqrt{e}}$)=$\frac{e}{2}$.
∴3a≥$\frac{e}{2}$,解得a≥$\frac{e}{6}$.
∴实数a的取值范围是$[\frac{e}{6},+∞)$.
故答案为:$[\frac{e}{6},+∞)$.
点评 本题考查了利用导数研究函数的单调性极值与最值、不等式与付出的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\sqrt{5}$ | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $-\frac{1}{2}$ | C. | 5 | D. | -5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}-1$ | B. | $\sqrt{5}+1$ | C. | $2\sqrt{5}+2$ | D. | $2\sqrt{5}-2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com