精英家教网 > 高中数学 > 题目详情
16.已知等比数列{an}满足a2a5=2a3,且a4,$\frac{5}{4}$,2a7成等差数列,则a1a2a3…an的最大值为1024.

分析 利用等比数列通项公式和等差数列定义列出方程组,求出首项和公比,从而得到${a}_{n}=16×(\frac{1}{2})^{n-1}={2}^{5-n}$,进而a1a2a3…an=24+3+2+1+…+(5-n)=${2}^{\frac{-{n}^{2}+9n}{2}}$,由此能求出结果.

解答 解:∵等比数列{an}满足a2a5=2a3,且a4,$\frac{5}{4}$,2a7成等差数列,
∴$\left\{\begin{array}{l}{{a}_{1}q{a}_{1}{q}^{4}=2{a}_{1}{q}^{2}}\\{{a}_{1}{q}^{3}+2{a}_{1}{q}^{6}=2×\frac{5}{4}}\end{array}\right.$,
解得${a}_{1}=16,q=\frac{1}{2}$,
∴${a}_{n}=16×(\frac{1}{2})^{n-1}={2}^{5-n}$,
∴a1a2a3…an=24+3+2+1+…+(5-n)=${2}^{\frac{-{n}^{2}+9n}{2}}$,
∴当n=4或n=5时,
a1a2a3…an取最大值,且最大值为210=1024.
故答案为:1024.

点评 本题考查等比数列、等差数列等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.四面体A-BCD中,AB=CD=10,AC=BD=2$\sqrt{34}$,AD=BC=2$\sqrt{41}$,则四面体A-BCD外接球的表面积为(  )
A.50πB.100πC.200πD.300π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知z=x2+y2,其中实数x,y满足$\left\{\begin{array}{l}-x+y≤1\\ x+2y≥2\\ x-2≤0\end{array}\right.$,则z的最小值是(  )
A.$\frac{{2\sqrt{5}}}{5}$B.$\frac{7}{9}$C.$\frac{4}{5}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{{\sqrt{3}c-a}}{b}=\frac{cosA}{cosB}$.
(Ⅰ)求sinB的值;
(Ⅱ)若a=2$\sqrt{3}$,b=2$\sqrt{6}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若将函数f(x)=$\left\{\begin{array}{l}{2|x|-2,x∈[-1,1]}\\{f(x-2),x∈(1,+∞)}\end{array}\right.$的正零点从小到大依次排成一列,得到数列{an},n∈N*,则数列{(-1)n+1an}的前2017项和为(  )
A.4032B.2016C.4034D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=3+5cosα}\\{y=4+5sinα}\end{array}\right.$,(α为参数),A,B在曲线C上,以原点O为极点,x轴的正半轴为极轴建立极坐标系,A,B两点的极坐标分别为A(ρ1,$\frac{π}{6}$),B(ρ2,$\frac{π}{2}$)
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)设曲线C的中心为M,求△MAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$n=3\int_{-\frac{π}{2}}^{\frac{π}{2}}{(sinx+cosx)dx}$,则${(y+\frac{2}{y})^n}$的展开式中的常数项为160.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(1,2),若向量$\overrightarrow{a}$-λ$\overrightarrow{b}$与向量$\overrightarrow{c}$=(1,-2)垂直,则实数λ=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}中,设a1=1,an+1=3an+1(n∈N*),若bn=$\frac{n}{({3}^{n}-1)•{2}^{n-2}}$•an,Tn是{bn}的前n项和,若不等式2nλ<2n-1Tn+n对一切的n∈N+恒成立,则实数λ的取值范围是(-∞,1).

查看答案和解析>>

同步练习册答案