精英家教网 > 高中数学 > 题目详情
6.四面体A-BCD中,AB=CD=10,AC=BD=2$\sqrt{34}$,AD=BC=2$\sqrt{41}$,则四面体A-BCD外接球的表面积为(  )
A.50πB.100πC.200πD.300π

分析 由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以10,2$\sqrt{34}$,2$\sqrt{41}$为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,由此能求出球的半径,进而求出球的表面积.

解答 解:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,
所以可在其每个面补上一个以10,2$\sqrt{34}$,2$\sqrt{41}$为三边的三角形作为底面,
且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,
从而可得到一个长、宽、高分别为x,y,z的长方体,
并且x2+y2=100,x2+z2=136,y2+z2=164,
设球半径为R,则有(2R)2=x2+y2+z2=200,
∴4R2=200,
∴球的表面积为S=4πR2=200π.
故选C.

点评 本题考查球的表面积的求法,是中档题,解题时要认真审题,注意构造法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,已知三棱柱ABC-A1B1C1的底面ABC是等边三角形,且AA1⊥底面ABC,M为AA1的中点,N在线段AB上,且AN=2NB,点P在CC1上.
(1)证明:平面BMC1⊥平面BCC1B1
(2)当$\frac{CP}{P{C}_{1}}$为何值时,有PN∥平面BMC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.
(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);
(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价xi(单位:元/件,整数)和销量yi(单位:件)(i=1,2,…,8)如下表所示:
售价x3335373941434547
销量y840800740695640580525460
①请根据下列数据计算相应的相关指数R2,并根据计算结果,选择合适的回归模型进行拟合;
②根据所选回归模型,分析售价x定为多少时?利润z可以达到最大.
$\hat y=-1200lnx+5000$$\hat y=-27x+1700$$\hat y=-\frac{1}{3}{x^2}+1200$
${\sum_{i=1}^8{({{y_i}-{{\hat y}_i}})}^2}$49428.7411512.43175.26
${\sum_{i=1}^8{({{y_i}-\overline y})}^2}$124650
(附:相关指数${R^2}=1-\frac{{{{\sum_{i=1}^n{({{y_i}-{{\hat y}_i}})}}^2}}}{{{{\sum_{i=1}^n{({{y_i}-\overline y})}}^2}}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知cos($\frac{π}{2}$+α)=$\frac{2\sqrt{2}}{3}$,|α|<$\frac{π}{2}$,则tanα等于(  )
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)=2g(x)+$\frac{x-4}{{x}^{2}+1}$,则下列结论中正确的序号是①④
①f($\frac{1}{x}$)=f(x);
②f(x)在($\frac{1}{2}$,+∞)上单调递减;
③g(x)在(0,+∞)上单调递增;
④若f($\frac{1}{{x}^{2}+1}$)+f(4x-4x2-2)≥0,则x∈(-∞,$\frac{1}{3}$]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\frac{{2}^{x}}{{2}^{x}+1}$+ax(a∈R),若f(ln3)=3,则f(ln$\frac{1}{3}$)=(  )
A.-2B.-3C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}是等差数列,首项a1=2,且a3是a2与a4+1的等比中项.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2}{(n+3)({a}_{n}+2)}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆C过抛物线y2=4x的焦点,且圆心在此抛物线的准线上,若圆C的圆心不在x轴上,且与直线x+$\sqrt{3}$y-3=0相切,则圆C的半径为14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等比数列{an}满足a2a5=2a3,且a4,$\frac{5}{4}$,2a7成等差数列,则a1a2a3…an的最大值为1024.

查看答案和解析>>

同步练习册答案