分析 求出函数的解析式,再进行验证,即可得出结论.
解答 解:由题意,-f(x)=2g(x)+$\frac{-x-4}{{x}^{2}+1}$,∴f(x)=$\frac{2x}{{x}^{2}+1}$,g(x)=$\frac{2}{{x}^{2}+1}$;
①f($\frac{1}{x}$)=$\frac{\frac{2}{x}}{\frac{1}{{x}^{2}}+1}$=$\frac{2x}{{x}^{2}+1}$=f(x),正确;
②∵f(x)=$\frac{2x}{{x}^{2}+1}$,∴f′(x)=$\frac{2(1-{x}^{2})}{({x}^{2}+1)^{2}}$,f(x)在(1,+∞)上单调递减,不正确;
③g′(x)=$\frac{-4x}{({x}^{2}+1)^{2}}$,∴g(x)在(0,+∞)上单调递减,不正确;
④利用①f($\frac{1}{x}$)=$\frac{\frac{2}{x}}{\frac{1}{{x}^{2}}+1}$=$\frac{2x}{{x}^{2}+1}$=f(x),知f($\frac{1}{{x}^{2}+1}$)=f(x2+1),故f($\frac{1}{{x}^{2}+1}$)+f(4x-4x2-2)≥0?f(x2+1)≥f(4x2-4x+2)=f((2x-1)2+1),再利用f(x)在(1,+∞)上单调递减,得x2+1≤-4x+4x2+2,∴3x2-4x+1≥0,∴x∈(-∞,$\frac{1}{3}$]∪[1,+∞),正确.
故答案为①④.
点评 本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{9}$ | B. | $\frac{4}{9}$ | C. | $\frac{2}{3}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 50π | B. | 100π | C. | 200π | D. | 300π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 1 | 2 | 3 | 4 | 5 |
| y | 13.2 | m | 14.2 | 15.4 | 16.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4032 | B. | 2016 | C. | 4034 | D. | 2017 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com