精英家教网 > 高中数学 > 题目详情
11.若将函数f(x)=$\left\{\begin{array}{l}{2|x|-2,x∈[-1,1]}\\{f(x-2),x∈(1,+∞)}\end{array}\right.$的正零点从小到大依次排成一列,得到数列{an},n∈N*,则数列{(-1)n+1an}的前2017项和为(  )
A.4032B.2016C.4034D.2017

分析 由题意知,函数f(x)的最小正周期T=2,且f(x)=0时,x=2k+2,k∈Z,得到数列{an},的通项公式,再求出bn=(-1)n+1(2n-1),求出数列的前2017项和即可

解答 解:由题意知,函数f(x)的最小正周期T=2,且f(x)=0时,x=2k+2,k∈Z,
又∵x>0,
∴an=2n-1,(n∈N*),
设bn=(-1)n+1(2n-1),则数列{bn}的前n项和为Tn
∴bn+bn+1=(-1)n+2•2,
∴T2017=T2016+2×2017-1=-1008×2+2×2017-1=2017,
故选:D

点评 本题考查了分段函数和周期函数的零点,等差数列,数列求和,以及运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)=2g(x)+$\frac{x-4}{{x}^{2}+1}$,则下列结论中正确的序号是①④
①f($\frac{1}{x}$)=f(x);
②f(x)在($\frac{1}{2}$,+∞)上单调递减;
③g(x)在(0,+∞)上单调递增;
④若f($\frac{1}{{x}^{2}+1}$)+f(4x-4x2-2)≥0,则x∈(-∞,$\frac{1}{3}$]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数f(x)=cos2x的图象向右平移$\frac{π}{3}$个单位得到g(x)的图象,若g(x)在(-2m,-$\frac{π}{6}$)和(3m,$\frac{5π}{6}$)上都单调递减,则实数m的取值范围为(  )
A.[$\frac{π}{9}$,$\frac{5π}{18}$)B.[$\frac{π}{9}$,$\frac{π}{3}$)C.($\frac{π}{12}$,$\frac{5π}{18}$)D.[$\frac{π}{18}$,$\frac{5π}{12}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.观察下列各等式:
1+1=$\frac{1}{2}$×4
(2+1)+(2+2)=1×7
(3+1)+(3+2)+(3+3)=$\frac{3}{2}$×10
(4+1)+(4+2)+(4+3)+(4+4)=2×13

按照此规律,则(n+1)+(n+2)+(n+3)+…+(n+n)=$\frac{n}{2}×(3n+1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{1-{2}^{x}}{1+{2}^{x}}$•sin(cosx)的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等比数列{an}满足a2a5=2a3,且a4,$\frac{5}{4}$,2a7成等差数列,则a1a2a3…an的最大值为1024.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知单位向量$\overrightarrow a$,$\overrightarrow b$,满足$\overrightarrow a⊥({\overrightarrow a+2\overrightarrow b})$,则$\overrightarrow a$与$\overrightarrow b$夹角的余弦值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{2}{x+2}$,点O为坐标原点,点An(n,f(n))(n∈N*),向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$与$\overrightarrow{i}$的夹角,则使得$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+$\frac{cos{θ}_{3}}{sin{θ}_{3}}$+…+$\frac{cos{θ}_{n}}{sin{θ}_{n}}$<t恒成立的实数t的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果实数x,y满足关系$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,又$\frac{2x+y-7}{x-3}$≥c恒成立,则c的取值范围为(  )
A.(-∞,$\frac{9}{5}$]B.(-∞,3]C.[$\frac{9}{5}$,+∞)D.[3,+∞)

查看答案和解析>>

同步练习册答案