精英家教网 > 高中数学 > 题目详情
1.如果实数x,y满足关系$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,又$\frac{2x+y-7}{x-3}$≥c恒成立,则c的取值范围为(  )
A.(-∞,$\frac{9}{5}$]B.(-∞,3]C.[$\frac{9}{5}$,+∞)D.[3,+∞)

分析 作出不等式组对应的平面区域,利用目标函数分式的几何意义求出其最小值,即可求出c的取值范围.

解答 解:设z=$\frac{2x+y-7}{x-3}$=2+$\frac{y-1}{x-3}$
z的几何意义是区域内的点到D(3,1)的斜率加2,
作出不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$对应的平面区域如图:

由图形,可得C($\frac{1}{2}$,$\frac{3}{2}$),
由图象可知,直线CD的斜率最小值为$\frac{2×\frac{1}{2}+\frac{3}{2}-7}{\frac{1}{2}-3}$=$\frac{9}{5}$,
∴z的最小值为$\frac{9}{5}$,
∴c的取值范围是(-∞,$\frac{9}{5}$].
故选:A.

点评 本题主要考查了线性规划的应用问题,利用直线斜率的几何意义求最小值是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若将函数f(x)=$\left\{\begin{array}{l}{2|x|-2,x∈[-1,1]}\\{f(x-2),x∈(1,+∞)}\end{array}\right.$的正零点从小到大依次排成一列,得到数列{an},n∈N*,则数列{(-1)n+1an}的前2017项和为(  )
A.4032B.2016C.4034D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=aln2x+bx在x=1处取得最大值ln2-1,则a=1,b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在区间[-1,2]内随机取一个实数a,则关于x的方程x2-4ax+5a2+a=0有解的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数${({1+i})^2}+\frac{2}{1+i}$的共轭复数的虚部是(  )
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}中,设a1=1,an+1=3an+1(n∈N*),若bn=$\frac{n}{({3}^{n}-1)•{2}^{n-2}}$•an,Tn是{bn}的前n项和,若不等式2nλ<2n-1Tn+n对一切的n∈N+恒成立,则实数λ的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|0<x<2},集合B={x|-1<x<1},集合C={x|mx+1>0},若A∪B⊆C,则实数m的取值范围为(  )
A.{m|-2≤m≤1}B.{m|-$\frac{1}{2}$≤m≤1}C.{m|-1≤m≤$\frac{1}{2}$}D.{m|-$\frac{1}{2}$≤m≤$\frac{1}{4}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是平行四边形,∠ABC=45°,AD=AP=2,$AB=DP=2\sqrt{2}$,E为CD的中点,点F在线段PB上.
(Ⅰ)求证:AD⊥PC;
(Ⅱ)试确定点F的位置,使得直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,短轴长为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若圆O:x2+y2=1的切线l与曲线C相交于A、B两点,线段AB的中点为M,求|OM|的最大值.

查看答案和解析>>

同步练习册答案