精英家教网 > 高中数学 > 题目详情
16.复数${({1+i})^2}+\frac{2}{1+i}$的共轭复数的虚部是(  )
A.iB.-iC.-1D.1

分析 利用复数的运算法则、虚部的定义即可得出.

解答 解:${({1+i})^2}+\frac{2}{1+i}$=2i+$\frac{2(1-i)}{(1+i)(1-i)}$=2i+1-i=1+i的共轭复数1-i的虚部是-1.
故选:C.

点评 本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{1-{2}^{x}}{1+{2}^{x}}$•sin(cosx)的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow{AB}$=(6,1),$\overrightarrow{CD}$=(x,-3),若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,则x=-18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在几何体A1B1C1-ABC中,∠ACB=90°,AC=BC=2,AA1⊥平面ABC,AA1∥BB1∥CC1,BB1:CC1:AA1=3:2:1,且AA1=1.
(Ⅰ)求证:平面A1B1C1⊥平面A1ABB1
(Ⅱ)求平面ABC与平面A1BC1所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x|x-2|,则不等式f(2-ln(x+1))>f(3)的解集为{x|-1<x<$\frac{1}{e}$-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果实数x,y满足关系$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,又$\frac{2x+y-7}{x-3}$≥c恒成立,则c的取值范围为(  )
A.(-∞,$\frac{9}{5}$]B.(-∞,3]C.[$\frac{9}{5}$,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在正四面体ABCD中,O是△BCD的中心,E,F分别是AB,AC上的动点,且$\overrightarrow{BE}$=λ$\overrightarrow{BA}$,$\overrightarrow{CF}$=(1-λ)$\overrightarrow{CA}$
(1)若OE∥平面ACD,求实数λ的值;
(2)若λ=$\frac{1}{2}$,正四面体ABCD的棱长为2$\sqrt{2}$,求平面DEF和平面BCD所成的角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在区域$Ω=\left\{{(x,y)|\left\{\begin{array}{l}x≥0\\ x+y≤1\\ x-y≤1\end{array}\right.}\right\}$中,若满足ax+y>0的区域面积占Ω面积的$\frac{1}{3}$,则实数a的值是(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$=2,且$\overrightarrow{b}$=(1,$\sqrt{3}$),则$\overrightarrow{a}$+$\overrightarrow{b}$在$\overrightarrow{b}$方向上的投影为3.

查看答案和解析>>

同步练习册答案