精英家教网 > 高中数学 > 题目详情
6.已知数列{an}中,设a1=1,an+1=3an+1(n∈N*),若bn=$\frac{n}{({3}^{n}-1)•{2}^{n-2}}$•an,Tn是{bn}的前n项和,若不等式2nλ<2n-1Tn+n对一切的n∈N+恒成立,则实数λ的取值范围是(-∞,1).

分析 可设an+1+t=3(an+t),化简由条件可得t,运用等比数列的通项公式可得an,bn,再由数列的求和方法:错位相减法,可得Tn,由题意可得不等式2nλ<2n+1-2对一切的n∈N+恒成立.即为λ<2-($\frac{1}{2}$)n-1对一切的n∈N+恒成立.判断不等式右边数列的单调性,求得最小值,即可得到所求范围.

解答 解:数列{an}中,设a1=1,an+1=3an+1(n∈N*),
可设an+1+t=3(an+t),即为an+1=3an+2t,
即有2t=1,即t=$\frac{1}{2}$.
则an+1+$\frac{1}{2}$=3(an+$\frac{1}{2}$),
则an+$\frac{1}{2}$=(a1+$\frac{1}{2}$)•3n-1
可得an=$\frac{1}{2}$(3n-1),
则bn=$\frac{n}{({3}^{n}-1)•{2}^{n-2}}$•an=$\frac{n}{({3}^{n}-1)•{2}^{n-2}}$•$\frac{1}{2}$(3n-1)=n•($\frac{1}{2}$)n-1
Tn=1•($\frac{1}{2}$)0+2•($\frac{1}{2}$)+3•($\frac{1}{2}$)2+…+n•($\frac{1}{2}$)n-1
$\frac{1}{2}$Tn=1•($\frac{1}{2}$)1+2•($\frac{1}{2}$)2+3•($\frac{1}{2}$)3+…+n•($\frac{1}{2}$)n
两式相减可得$\frac{1}{2}$Tn=1+($\frac{1}{2}$)1+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-1-n•($\frac{1}{2}$)n
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•($\frac{1}{2}$)n
化简可得Tn=4-(2n+4)•($\frac{1}{2}$)n
不等式2nλ<2n-1Tn+n对一切的n∈N+恒成立,
即有不等式2nλ<2n+1-2对一切的n∈N+恒成立.
即为λ<2-($\frac{1}{2}$)n-1对一切的n∈N+恒成立.
由2-($\frac{1}{2}$)n-1在n∈N+递增,可得n=1时,取得最小值1,
则λ<1.
故答案为:(-∞,1).

点评 本题考查数列的通项的求法,注意运用构造数列和等比数列的通项公式,考查数列的求和方法:错位相减法,以及不等式恒成立问题的解法,注意运用单调性,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知等比数列{an}满足a2a5=2a3,且a4,$\frac{5}{4}$,2a7成等差数列,则a1a2a3…an的最大值为1024.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数a、b、c∈R+,且ab+ac+bc+2$\sqrt{5}=6-{a^2}$,则2a+b+c的最小值为(  )
A.$\sqrt{5}-1$B.$\sqrt{5}+1$C.$2\sqrt{5}+2$D.$2\sqrt{5}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=x+cosx,x∈(0,1),则满足不等式f(t2)>f(2t-1)的实数t的取值范围是$\frac{1}{2}$<t<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果实数x,y满足关系$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,又$\frac{2x+y-7}{x-3}$≥c恒成立,则c的取值范围为(  )
A.(-∞,$\frac{9}{5}$]B.(-∞,3]C.[$\frac{9}{5}$,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若关于x的不等式|ax-2|<6的解集为{x|-$\frac{4}{3}$<x<$\frac{8}{3}$}
(1)求a的值;
(2)若b=1,求$\sqrt{-at+12}$+$\sqrt{3bt}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.关于x的方程kx2-2lnx-k=0有两个不等实根,则实数k的取值范围是(0,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={-1,1,2},B={0,1,2,7},则集合A∪B中元素的个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在数列{an}中,a1=2,an+1=an+2,Sn为{an}的前n项和,则S10=(  )
A.90B.100C.110D.130

查看答案和解析>>

同步练习册答案