精英家教网 > 高中数学 > 题目详情
9.在区间[-1,2]内随机取一个实数a,则关于x的方程x2-4ax+5a2+a=0有解的概率是$\frac{1}{3}$.

分析 根据几何概型计算公式,用符合题意的基本事件对应的区间长度除以所有基本事件对应的区间长度,即可得到所求的概率.

解答 解:∵关于x的方程x2-4ax+5a2+a=0有解,
∴16a2-20a2-4a≥0,
∴-1≤a≤0时方程有实根,
∵在区间[-1,2]上任取一实数a,
∴所求的概率为P=$\frac{0+1}{2+1}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$

点评 本题给出在区间上取数的事件,求相应的概率值.着重考查了几何概型计算公式及其应用的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.观察下列各等式:
1+1=$\frac{1}{2}$×4
(2+1)+(2+2)=1×7
(3+1)+(3+2)+(3+3)=$\frac{3}{2}$×10
(4+1)+(4+2)+(4+3)+(4+4)=2×13

按照此规律,则(n+1)+(n+2)+(n+3)+…+(n+n)=$\frac{n}{2}×(3n+1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{2}{x+2}$,点O为坐标原点,点An(n,f(n))(n∈N*),向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$与$\overrightarrow{i}$的夹角,则使得$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+$\frac{cos{θ}_{3}}{sin{θ}_{3}}$+…+$\frac{cos{θ}_{n}}{sin{θ}_{n}}$<t恒成立的实数t的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数a、b、c∈R+,且ab+ac+bc+2$\sqrt{5}=6-{a^2}$,则2a+b+c的最小值为(  )
A.$\sqrt{5}-1$B.$\sqrt{5}+1$C.$2\sqrt{5}+2$D.$2\sqrt{5}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在几何体A1B1C1-ABC中,∠ACB=90°,AC=BC=2,AA1⊥平面ABC,AA1∥BB1∥CC1,BB1:CC1:AA1=3:2:1,且AA1=1.
(Ⅰ)求证:平面A1B1C1⊥平面A1ABB1
(Ⅱ)求平面ABC与平面A1BC1所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=x+cosx,x∈(0,1),则满足不等式f(t2)>f(2t-1)的实数t的取值范围是$\frac{1}{2}$<t<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如果实数x,y满足关系$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,又$\frac{2x+y-7}{x-3}$≥c恒成立,则c的取值范围为(  )
A.(-∞,$\frac{9}{5}$]B.(-∞,3]C.[$\frac{9}{5}$,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.关于x的方程kx2-2lnx-k=0有两个不等实根,则实数k的取值范围是(0,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在三棱锥A-BCD中,E,F分别为BC,CD上的点,且BD∥平面AEF.
(1)求证:EF∥平ABD面;
(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.

查看答案和解析>>

同步练习册答案