精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\frac{2}{x+2}$,点O为坐标原点,点An(n,f(n))(n∈N*),向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$与$\overrightarrow{i}$的夹角,则使得$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+$\frac{cos{θ}_{3}}{sin{θ}_{3}}$+…+$\frac{cos{θ}_{n}}{sin{θ}_{n}}$<t恒成立的实数t的最小值为$\frac{3}{2}$.

分析 根据题意知$\frac{π}{2}$-θn是直线OAn的倾斜角,化$\frac{co{sθ}_{n}}{si{nθ}_{n}}$=$\frac{sin(\frac{π}{2}{-θ}_{n})}{cos(\frac{π}{2}{-θ}_{n})}$=tan($\frac{π}{2}$-θn)=$\frac{f(n)}{n}$,再求出$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+$\frac{cos{θ}_{3}}{sin{θ}_{3}}$+…+$\frac{cos{θ}_{n}}{sin{θ}_{n}}$的解析式g(n),利用g(n)<t恒成立求出t的最小值.

解答 解:根据题意得,$\frac{π}{2}$-θn是直线OAn的倾斜角,
∴$\frac{co{sθ}_{n}}{si{nθ}_{n}}$=$\frac{sin(\frac{π}{2}{-θ}_{n})}{cos(\frac{π}{2}{-θ}_{n})}$
=tan($\frac{π}{2}$-θn
=$\frac{f(n)}{n}$
=$\frac{2}{n(n+2)}$
=$\frac{1}{n}$-$\frac{1}{n+2}$,
∴$\frac{cos{θ}_{1}}{sin{θ}_{1}}$+$\frac{cos{θ}_{2}}{sin{θ}_{2}}$+$\frac{cos{θ}_{3}}{sin{θ}_{3}}$+…+$\frac{cos{θ}_{n}}{sin{θ}_{n}}$
=(1-$\frac{1}{3}$)+($\frac{1}{2}$-$\frac{1}{4}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{n}$-$\frac{1}{n+2}$)
=1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$
=$\frac{3}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$;
要使$\frac{3}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$<t恒成立,
只须使实数t的最小值为$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查了平面向量的应用问题,也考查了直线的倾斜角与斜率以及不等式恒成立问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知数据x,y的取值如表:
x12345
y13.2m14.215.416.4
从散点图可知,y与x呈线性相关关系,已知第四组数据在回归直线$\hat y=0.8x+\hat a$上,则m的取值为13.8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若将函数f(x)=$\left\{\begin{array}{l}{2|x|-2,x∈[-1,1]}\\{f(x-2),x∈(1,+∞)}\end{array}\right.$的正零点从小到大依次排成一列,得到数列{an},n∈N*,则数列{(-1)n+1an}的前2017项和为(  )
A.4032B.2016C.4034D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$n=3\int_{-\frac{π}{2}}^{\frac{π}{2}}{(sinx+cosx)dx}$,则${(y+\frac{2}{y})^n}$的展开式中的常数项为160.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在直角△ABC中,斜边BC=6,以BC中点O为圆心,作半径为2的圆,分别交BC于两点,若|AP|=m,|AQ|=n,则m2+n2=26.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(1,2),若向量$\overrightarrow{a}$-λ$\overrightarrow{b}$与向量$\overrightarrow{c}$=(1,-2)垂直,则实数λ=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=aln2x+bx在x=1处取得最大值ln2-1,则a=1,b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在区间[-1,2]内随机取一个实数a,则关于x的方程x2-4ax+5a2+a=0有解的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD是平行四边形,∠ABC=45°,AD=AP=2,$AB=DP=2\sqrt{2}$,E为CD的中点,点F在线段PB上.
(Ⅰ)求证:AD⊥PC;
(Ⅱ)试确定点F的位置,使得直线EF与平面PDC所成的角和直线EF与平面ABCD所成的角相等.

查看答案和解析>>

同步练习册答案